| 图源
由于暂未发现MRI扫描对人体的伤害,加上MRI影像的超高空间分辨率,所以MRI脑影像分析理所当然的成为了脑科学研究最重要的手段之一。MRI脑影像主要包括两种,结构MRI脑影像(此后简称sMRI脑影像)和功能MRI脑影像(此后简称fMRI脑影像),前者反映大脑的组织结构,后者反映大脑的活动代谢。MRI影像是3D的,一幅图被称为一个volume,图中一个点被称为一个体素,体素以一定空间分辨率(如 3 m m 3 3mm^3 3mm3)近似的一一对应大脑的某个解剖位置。
fMRI脑影像通过BOLD信号来成像。BOLD(blood oxygenation level dependent,血氧依赖水平)信号,可以间接反映大脑的活动代谢情况,某个区域BOLD信号高表示该区域正忙于处理信息或者说被激活,是大脑功能性的体现。fMRI脑影像由多个volume组成,是一个4D序列,如上图左上角所示。一个volume代表一个时间点的影像,影像中的一个体素的值,表示空间位置与之对应的大脑某个小体积内的BOLD信号值。如果把序列中每个volume的相同大脑位置(如 R O I i ROI_i ROIi)的值都取出来,按照先后先后顺序排在一起,就形成了一个该大脑位置(如 R O I i ROI_i ROIi)的随时间变化的BOLD信号或者时间序列,如上图右上角所示。
某个大脑位置(如 R O I i ROI_i ROIi)的BOLD信号,反映了在fMRI脑影像采集过程中该大脑位置(如 R O I i ROI_i ROIi)活动代谢的变化。我们有理由相信,如果两个大脑位置BOLD信号变化的同步性很高,即大脑活动代谢的同步性很高,那么这两个大脑位置在功能上应该存在很强的联系,即存在很强的功能连接(Functional Collectivity,FC)。
常用Pearson相关系数来评估两个信号的同步性,两个大脑位置(如 R O I i ROI_i ROIi与 R O I j ROI_j ROIj)的BOLD信号的Pearson相关系数值,就称作它们之间的功能连接强度。如果将所有大脑位置BOLD信号之间两两做Pearson相关,就会形成一个对称的功能连接矩阵(FC Matrix)。功能连接矩阵可以看做是大脑功能协作性的一种体现,是基于4DfMRI脑影像提取的一种有效的描述大脑功能的特征。通过这个特征,我们可以做进一步的处理与分析。功能连接一般是做静息态fMRI分析,但是也可以用于任务态。
copyright © 意疏:https://blog.csdn.net/sinat_35907936/article/details/115253078。初学小白,若有错误,还望不吝指出。
皮尔逊Pearson相关
一个连接由节点和连接强度(边)组成。功能连接中的节点可以是单个体素,也可以是由脑图谱(atlas,parcellation)定义的脑区ROI,如下图中一个彩色块就代表一个ROI(脑区)。通常的做法是将脑图谱中多个或者全部ROI作为节点来两两建立连接,或是以多个ROI为种子点,以另外多个ROI作为目标点来建立连接,又或者是以脑图谱中单个ROI为种子点,以除此ROI外的全脑体素作为目标点来建立连接。第一中将形成一个对称的功能连接方阵,第二中将形成一个功能连接矩阵,第三个将形成一个功能连接谱(map)。暂且把第一种称基于ROI的功能连接,把后两种称作基于种子点的功能连接。
定义连接强度(边),最常用的方式是Pearson相关,两个节点之间可能没有物理连接,但如果他们的BOLD信号同步性很强,则它们之间可能存在很强的功能上的协作,即很强的功能连接,这是一个很好的表征两个节点间关系的特征。如果一个节点包含不只一个体素(通常情况),那该节点的BOLD信号为该节点内所有体素BOLD信号的平均。
现在想想同步性在描述的是什么?很容易想到,就是线性关系,如果一个信号值变大,另一个信号值也跟着变大,一个信号值变小,另一个信号值也跟着变小,或者相反,那么以两个信号的所有取值对应作为坐标画成的散点图,一定会在一条直线附近分布。Pearson相关,是两个信号或者随机变量线性相关性的衡量,值在[-1,1],当值为1或者-1时,是完全的线性相关,当值为0时,是完全的线性无关。其定义式如式(1),可见其是归一化了的协方差,而协方差正是在衡量两个随机变量或者信号X,Y之间的协同性。
r = c o v ( X , Y ) σ X σ Y = E ( ( X t − X ‾ ) ( Y t − Y ‾ ) ) σ X σ Y (1) \tag 1 r = \cfrac {cov(X,Y)}{\sigma_X \sigma_Y}=\cfrac {E((X_t-\overline X)(Y_t- \overline Y))} {\sigma_X \sigma_Y} r=σXσYcov(X,Y)=σXσYE((Xt−X)(Yt−Y))(1)
其中 X t , Y t X_t,Y_t Xt