fMRI脑影像特征提取——Pearson相关与低阶功能连接LOFC(dpabi+nilearn)

fMRI功能连接矩阵构建流程
| 图源

  由于暂未发现MRI扫描对人体的伤害,加上MRI影像的超高空间分辨率,所以MRI脑影像分析理所当然的成为了脑科学研究最重要的手段之一。MRI脑影像主要包括两种,结构MRI脑影像(此后简称sMRI脑影像)和功能MRI脑影像(此后简称fMRI脑影像),前者反映大脑的组织结构,后者反映大脑的活动代谢MRI影像是3D的,一幅图被称为一个volume,图中一个点被称为一个体素,体素以一定空间分辨率(如 3 m m 3 3mm^3 3mm3)近似的一一对应大脑的某个解剖位置。

  fMRI脑影像通过BOLD信号来成像。BOLD(blood oxygenation level dependent,血氧依赖水平)信号,可以间接反映大脑的活动代谢情况,某个区域BOLD信号高表示该区域正忙于处理信息或者说被激活,是大脑功能性的体现。fMRI脑影像由多个volume组成,是一个4D序列,如上图左上角所示。一个volume代表一个时间点的影像,影像中的一个体素的值,表示空间位置与之对应的大脑某个小体积内的BOLD信号值。如果把序列中每个volume的相同大脑位置(如 R O I i ROI_i ROIi)的值都取出来,按照先后先后顺序排在一起,就形成了一个该大脑位置(如 R O I i ROI_i ROIi)的随时间变化的BOLD信号或者时间序列,如上图右上角所示。

  某个大脑位置(如 R O I i ROI_i ROIi)的BOLD信号,反映了在fMRI脑影像采集过程中该大脑位置(如 R O I i ROI_i ROIi)活动代谢的变化。我们有理由相信,如果两个大脑位置BOLD信号变化的同步性很高,即大脑活动代谢的同步性很高,那么这两个大脑位置在功能上应该存在很强的联系,即存在很强的功能连接(Functional Collectivity,FC)。

  常用Pearson相关系数来评估两个信号的同步性,两个大脑位置(如 R O I i ROI_i ROIi R O I j ROI_j ROIj)的BOLD信号的Pearson相关系数值,就称作它们之间的功能连接强度。如果将所有大脑位置BOLD信号之间两两做Pearson相关,就会形成一个对称的功能连接矩阵(FC Matrix)。功能连接矩阵可以看做是大脑功能协作性的一种体现,是基于4DfMRI脑影像提取的一种有效的描述大脑功能的特征。通过这个特征,我们可以做进一步的处理与分析。功能连接一般是做静息态fMRI分析,但是也可以用于任务态。

copyright © 意疏:https://blog.csdn.net/sinat_35907936/article/details/115253078。初学小白,若有错误,还望不吝指出。


皮尔逊Pearson相关


  一个连接由节点和连接强度(边)组成。功能连接中的节点可以是单个体素,也可以是由脑图谱(atlas,parcellation)定义的脑区ROI,如下图中一个彩色块就代表一个ROI(脑区)。通常的做法是将脑图谱中多个或者全部ROI作为节点来两两建立连接,或是以多个ROI为种子点,以另外多个ROI作为目标点来建立连接,又或者是以脑图谱中单个ROI为种子点,以除此ROI外的全脑体素作为目标点来建立连接。第一中将形成一个对称的功能连接方阵,第二中将形成一个功能连接矩阵,第三个将形成一个功能连接谱(map)。暂且把第一种称基于ROI的功能连接,把后两种称作基于种子点的功能连接。

AAL脑图谱
  定义连接强度(),最常用的方式是Pearson相关,两个节点之间可能没有物理连接,但如果他们的BOLD信号同步性很强,则它们之间可能存在很强的功能上的协作,即很强的功能连接,这是一个很好的表征两个节点间关系的特征。如果一个节点包含不只一个体素(通常情况),那该节点的BOLD信号为该节点内所有体素BOLD信号的平均

  现在想想同步性在描述的是什么?很容易想到,就是线性关系,如果一个信号值变大,另一个信号值也跟着变大,一个信号值变小,另一个信号值也跟着变小,或者相反,那么以两个信号的所有取值对应作为坐标画成的散点图,一定会在一条直线附近分布。Pearson相关,是两个信号或者随机变量线性相关性的衡量,值在[-1,1],当值为1或者-1时,是完全的线性相关,当值为0时,是完全的线性无关。其定义式如式(1),可见其是归一化了的协方差,而协方差正是在衡量两个随机变量或者信号X,Y之间的协同性。

r = c o v ( X , Y ) σ X σ Y = E ( ( X t − X ‾ ) ( Y t − Y ‾ ) ) σ X σ Y (1) \tag 1 r = \cfrac {cov(X,Y)}{\sigma_X \sigma_Y}=\cfrac {E((X_t-\overline X)(Y_t- \overline Y))} {\sigma_X \sigma_Y} r=σXσYcov(X,Y)=σXσYE((XtX)(YtY))(1)

  其中 X t , Y t X_t,Y_t Xt

### 使用 RESTplus 进行 fMRI 功能连接分析 RESTplus 是一款基于 SPM 开发的用于 fMRI 数据批处理的强大工具,具备界面友好、易于操作的特点[^1]。该平台支持多种数据预处理统计分析功能,其中包括功能连接分析。 #### 准备工作 在启动具体的功能连接分析之前,需确保已经完成必要的前期准备: - **数据导入**:将待分析的原始 MRI 图像文件按照标准结构放置于指定目录内。 - **质量控制**:通过 RESTplus 的 QC 模块评估图像的质量,剔除不符合要求的数据集。 #### 定义感兴趣区 (ROI) 对于功能连接研究而言,定义 ROI 至关重要。可以通过如下途径创建或选取 ROIs: - 利用手动绘制的方式,在解剖模板上标记特定脑区作为种子点; - 借助已有文献报道的标准坐标位置快速定位目标区域; - 导入第三方软件生成的 ROI 文件(如 AAL atlas)以便后续批量处理。 一旦确定好感兴趣的神经元集群,则可通过 RESTplus 中的相关选项保存这些设定好的 ROIs 信息至项目配置中去[^3]。 #### 实施功能连接计算 当一切就绪之后,便可以在 RESTplus 平台上执行实际的功能连接运算过程了。主要步骤包括但不限于以下几个方面: - **时间序列提取**:针对每一个选定的 ROI 提取出对应的 BOLD 信号变化曲线。 - **协方差估计**:利用 Pearson 相关系数或其他相似度量指标衡量不同节点间的时间同步程度。 - **网络构建可视化**:依据所得关联强度矩阵描绘大脑内部各部分之间的交互模式;同时提供图形化展示手段帮助直观理解结果分布情况。 此外值得注意的是,在进行多组对比实验设计时,还应考虑采用适当的方法校正多重比较带来的假阳性风险,比如 False Discovery Rate(FDR)[^2]。 ```matlab % MATLAB 示例代码片段 - 计算两个ROIs间的Pearson相关系数 roi_data_1 = load('path_to_roi_time_series_1.txt'); % 加载第一个ROI的时间序列数据 roi_data_2 = load('path_to_roi_time_series_2.txt'); % 加载第二个ROI的时间序列数据 corr_coef = corr(roi_data_1, roi_data_2); % 计算两者的皮尔逊相关性得分 disp(['The correlation coefficient between two ROIs is ', num2str(corr_coef)]); ```
评论 48
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值