cinta作业9:QR(二次剩余)

1、证明命题11.2

请添加图片描述

  • 封闭性

设任意两个元素 m 1 , m 2 ∈ Q R p m_{1},m_{2}\in\mathbb{QR}_{p} m1,m2QRp,则存在 x 1 , x 2 ∈ Z p ∗ x_{1},x_{2}\in\mathbb{Z}_{p}^{*} x1,x2Zp,使得
m 1 ≡ x 1 2 m o d    p m 2 ≡ x 2 2 m o d    p m_{1}\equiv x_{1}^{2} \mod p \\ m_{2}\equiv x_{2}^{2} \mod p m1x12modpm2x22modp
m 1 m 2 ≡ x 1 2 x 2 2 ≡ ( x 1 x 2 ) 2 m o d    p m_{1}m_{2}\equiv x_{1}^{2}x_{2}^{2}\equiv (x_{1}x_{2})^{2} \mod p m1m2x12x22(x1x2)2modp,而 x 1 x 2 ∈ Z p ∗ x_{1}x_{2}\in\mathbb{Z}_{p}^{*} x1x2Zp,故 m 1 m 2 m_{1}m_{2} m1m2 在模p下是一个平方数, m 1 m 2 ∈ Q R p m_{1}m_{2}\in\mathbb{QR}_{p} m1m2QRp,满足封闭性

  • 结合律

设任意三个元素 m 1 , m 2 , m 3 ∈ Q R p m_{1},m_{2},m_{3}\in\mathbb{QR}_{p} m1,m2,m3QRp,则存在 x 1 , x 2 , x 3 ∈ Z p ∗ x_{1},x_{2},x_{3}\in\mathbb{Z}_{p}^{*} x1,x2,x3Zp,使得
m 1 ≡ x 1 2 m o d    p m 2 ≡ x 2 2 m o d    p m 3 ≡ x 3 2 m o d    p m_{1}\equiv x_{1}^{2} \mod p \\ m_{2}\equiv x_{2}^{2} \mod p \\ m_{3}\equiv x_{3}^{2} \mod p m1x12modpm2x22modpm3x32modp
m 1 ( m 2 m 3 ) ≡ x 1 2 ( x 2 2 x 3 2 ) ≡ ( x 1 2 x 2 2 ) x 3 2 ≡ ( m 1 m 2 ) m 3 m o d    p m_{1}(m_{2}m_{3})\equiv x_{1}^{2}(x_{2}^{2}x_{3}^{2})\equiv (x_{1}^{2}x_{2}^{2})x_{3}^{2}\equiv(m_{1}m_{2})m_{3} \mod p m1(m2m3)x12(x22x32)(x12x22)x32(m1m2)m3modp,故满足结合律

  • 单位元

易知模p下1是平方数,故群 Q R p \mathbb{QR}_{p} QRp有单位元1

  • 逆元

设任意元素 m ∈ Q R p m\in\mathbb{QR}_{p} mQRp,则存在 x ∈ Z p ∗ x\in\mathbb{Z}_{p}^{*} xZp,使得
m ≡ x 2 m o d    p m\equiv x^{2} \mod p mx2modp
x ∈ Z p ∗ x\in\mathbb{Z}_{p}^{*} xZp,所以存在一个逆元 x − 1 x^{-1} x1 使得
x x − 1 ≡ 1 m o d    p xx^{-1}\equiv 1 \mod p xx11modp
则有 m ( x − 1 ) 2 ≡ x 2 ( x − 1 ) 2 ≡ 1 m o d    p m(x^{-1})^{2}\equiv x^{2}(x^{-1})^{2}\equiv 1 \mod p m(x1)2x2(x1)21modp,故 m m m 模p下存在一个逆元为 ( x − 1 ) 2 (x^{-1})^{2} (x1)2,记作 m − 1 m^{-1} m1,而 m − 1 m^{-1} m1 显然是模p的平方数,即 m − 1 ∈ Q R p m^{-1}\in\mathbb{QR}_{p} m1QRp ,故存在逆元


2、群论的方法证明定理11.1

请添加图片描述
Q R \mathrm{QR} QR 所构成的群为 Q R p \mathbb{QR}_{p} QRp ,定义一个映射 ψ : Z p ∗ → Q R p , ψ ( a ) = a 2 \psi:\mathbb{Z}_{p}^{*}\rightarrow\mathbb{QR}_{p},\psi(a)=a^{2} ψ:ZpQRp,ψ(a)=a2,由于 ψ ( m n ) = ( m n ) 2 = m 2 n 2 = ψ ( m ) ψ ( n ) \psi(mn)=(mn)^{2}=m^{2}n^{2}=\psi(m)\psi(n) ψ(mn)=(mn)2=m2n2=ψ(m)ψ(n),故映射 ψ \psi ψ 是一个群同态映射。

并且易知映射 ψ \psi ψ K e r n e l \mathrm{Kernel} Kernel { 1 , p − 1 } \{1,p-1\} {1,p1} ,记作 K K K,则有商群 Z p / K \mathbb{Z}_{p}/K Zp/K ,且存在一个标准同态 ϕ : Z p → Z p / K \phi:\mathbb{Z}_{p}\rightarrow \mathbb{Z}_{p}/K ϕ:ZpZp/K,根据商群的定义以及拉格朗日定理可得: ∣ Z p / K ∣ = [ Z p : K ] = ∣ Z p ∣ / ∣ K ∣ = ( p − 1 ) / 2 |\mathbb{Z}_{p}/K|=[\mathbb{Z}_{p}:K]=|\mathbb{Z}_{p}|/|K|=(p-1)/2 Zp/K=[Zp:K]=Zp/K=(p1)/2

再根据第一同构定理,映射 η : Z p / K → Q R p \eta:\mathbb{Z}_{p}/K\rightarrow \mathbb{QR}_{p} η:Zp/KQRp 是一个群同构,故有 ∣ Q R p ∣ = ∣ Z p / K ∣ = ( p − 1 ) / 2 |\mathbb{QR}_{p}|=|\mathbb{Z}_{p}/K|=(p-1)/2 QRp=Zp/K=(p1)/2,即 Q R \mathrm{QR} QR 共有 ( p − 1 ) / 2 (p-1)/2 (p1)/2 个,而 Q N R \mathrm{QNR} QNR 即是 Z p \mathbb{Z}_{p} Zp 中另外的 ( p − 1 ) / 2 (p-1)/2 (p1)/2 个,证毕


3、定义映射 ψ : z p ∗ → { ± 1 } , ψ ( a ) = ( a p ) , ∀ a ∈ z p ∗ \psi:z_{p}^{*}\rightarrow\{\pm1\},\psi(a)=(\frac{a}{p}),\forall a\in z_{p}^{*} ψ:zp{±1},ψ(a)=(pa),azp,证明该映射是一个满同态

m , n ∈ z p ∗ m,n\in z_{p}^{*} m,nzp ,则 ψ ( m n ) = ( m n p ) = ( m p ) ( n p ) = ψ ( m ) ψ ( n ) \psi(mn)=(\frac{mn}{p})=(\frac{m}{p})(\frac{n}{p})=\psi(m)\psi(n) ψ(mn)=(pmn)=(pm)(pn)=ψ(m)ψ(n),故映射 ψ \psi ψ 是一个同态映射。
p p p 是素数,根据定理1.1可知,模 p p p Q R \mathrm{QR} QR ( p − 1 ) / 2 (p-1)/2 (p1)/2 个, Q N R \mathrm{QNR} QNR ( p − 1 ) / 2 (p-1)/2 (p1)/2 个,则群 z p ∗ z_{p}^{*} zp 中所有元素分别通过映射 ψ ( a ) = ( a p ) \psi(a)=(\frac{a}{p}) ψ(a)=(pa),映射到+1或者-1上,故映射 ψ \psi ψ 是一个满射。
综上,该映射是一个满同态


4、设p是奇素数,证明 z p ∗ z_{p}^{*} zp 的所有生成元都是模p的二次非剩余

a a a Z p ∗ \mathbb{Z}_{p}^{*} Zp 的生成元,则 ∀ x ∈ Z p ∗ \forall x\in\mathbb{Z}_{p}^{*} xZp,都有 a k = x , k ∈ Z a^{k}=x,k\in \mathbb{Z} ak=x,kZ
假设 a a a 是模 p p p 的二次剩余 Q R \mathrm{QR} QR,又因为 Q R × Q R = Q R \mathrm{QR}\times \mathrm{QR}=\mathrm{QR} QR×QR=QR,则 a k = Q R k = Q R , k ∈ Z a^{k}=\mathrm{QR}^{k}=\mathrm{QR},k\in \mathbb{Z} ak=QRk=QR,kZ
故当 x x x Z p ∗ \mathbb{Z}_{p}^{*} Zp 中的 Q N R \mathrm{QNR} QNR 时,产生矛盾,则生成元 a a a 不可能是二次剩余 Q R \mathrm{QR} QR,所以 z p ∗ z_{p}^{*} zp 的所有生成元都是模p的二次非剩余


5、证明命题11.4

请添加图片描述

  1. 同余式得出勒让德符号相等

当a为模p的QR时,则有 a ≡ b ≡ x 2 m o d    p a\equiv b\equiv x^{2} \mod p abx2modp,故b也是模p的QR,则有 ( a p ) = ( b p ) (\frac{a}{p})=(\frac{b}{p}) (pa)=(pb)
当a为模p的QNR时,则有 a ≡ b ≢ x 2 m o d    p a\equiv b\not\equiv x^{2} \mod p abx2modp,故b也是模p的QNR,则有 ( a p ) = ( b p ) (\frac{a}{p})=(\frac{b}{p}) (pa)=(pb)
综上, a ≡ b m o d    p a\equiv b\mod p abmodp,则 ( a p ) = ( b p ) (\frac{a}{p})=(\frac{b}{p}) (pa)=(pb) ,证毕

  1. 勒让德符号相乘

当a是模p的QR,b也是模p的QR时,ab为QR x QR,仍为QR,故 ( a p ) ( b p ) = 1 ∗ 1 = 1 = ( a b p ) (\frac{a}{p})(\frac{b}{p})=1*1=1=(\frac{ab}{p}) (pa)(pb)=11=1=(pab)
当a,b其中一个是模p的QR,另一个是模p的QNR时,ab为QR x QNR或者QNR x QR,结果为QNR,故 ( a p ) ( b p ) = 1 ∗ ( − 1 ) = ( − 1 ) ∗ 1 = − 1 = ( a b p ) (\frac{a}{p})(\frac{b}{p})=1*(-1)=(-1)*1=-1=(\frac{ab}{p}) (pa)(pb)=1(1)=(1)1=1=(pab)
当a是模p的QNR,b也是模p的QNR时,ab为QNR*QNR,结果为QR,故 ( a p ) ( b p ) = ( − 1 ) ∗ ( − 1 ) = 1 = ( a b p ) (\frac{a}{p})(\frac{b}{p})=(-1)*(-1)=1=(\frac{ab}{p}) (pa)(pb)=(1)(1)=1=(pab) ,证毕

  1. 平方数的勒让德符号为1

a ∈ Z a\in\mathbb{Z} aZ,故 a 2 a^{2} a2 是模p的平方数,即 a 2 a^{2} a2 是模p的QR,故 ( a 2 p ) = 1 (\frac{a^{2}}{p})=1 (pa2)=1


6、证明推论11.1

请添加图片描述
因为p是一个奇素数,根据欧拉准则可得:
( − 1 p ) ≡ ( − 1 ) ( p − 1 ) / 2 m o d    p (\frac{-1}{p})\equiv (-1)^{(p-1)/2} \mod p (p1)(1)(p1)/2modp
p ≡ 1 m o d    4 p\equiv 1 \mod 4 p1mod4 时,则有 p = 4 k + 1 , k ∈ Z p=4k+1,k\in\mathbb{Z} p=4k+1,kZ,则 ( − 1 p ) ≡ ( − 1 ) ( p − 1 ) / 2 ≡ ( − 1 ) ( 4 k + 1 − 1 ) / 2 ≡ 1 m o d    p (\frac{-1}{p})\equiv (-1)^{(p-1)/2}\equiv(-1)^{(4k+1-1)/2} \equiv 1 \mod p (p1)(1)(p1)/2(1)(4k+11)/21modp

p ≡ − 1 m o d    4 p\equiv -1 \mod 4 p1mod4 时,则有 p = 4 k − 1 , k ∈ Z p=4k-1,k\in\mathbb{Z} p=4k1,kZ,则 ( − 1 p ) ≡ ( − 1 ) ( p − 1 ) / 2 ≡ ( − 1 ) ( 4 k − 1 − 1 ) / 2 ≡ − 1 m o d    p (\frac{-1}{p})\equiv (-1)^{(p-1)/2}\equiv(-1)^{(4k-1-1)/2}\equiv -1 \mod p (p1)(1)(p1)/2(1)(4k11)/21modp

综上,证毕

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GOAT_0x02

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值