1、证明命题11.2
- 封闭性
设任意两个元素
m
1
,
m
2
∈
Q
R
p
m_{1},m_{2}\in\mathbb{QR}_{p}
m1,m2∈QRp,则存在
x
1
,
x
2
∈
Z
p
∗
x_{1},x_{2}\in\mathbb{Z}_{p}^{*}
x1,x2∈Zp∗,使得
m
1
≡
x
1
2
m
o
d
p
m
2
≡
x
2
2
m
o
d
p
m_{1}\equiv x_{1}^{2} \mod p \\ m_{2}\equiv x_{2}^{2} \mod p
m1≡x12modpm2≡x22modp
则
m
1
m
2
≡
x
1
2
x
2
2
≡
(
x
1
x
2
)
2
m
o
d
p
m_{1}m_{2}\equiv x_{1}^{2}x_{2}^{2}\equiv (x_{1}x_{2})^{2} \mod p
m1m2≡x12x22≡(x1x2)2modp,而
x
1
x
2
∈
Z
p
∗
x_{1}x_{2}\in\mathbb{Z}_{p}^{*}
x1x2∈Zp∗,故
m
1
m
2
m_{1}m_{2}
m1m2 在模p下是一个平方数,
m
1
m
2
∈
Q
R
p
m_{1}m_{2}\in\mathbb{QR}_{p}
m1m2∈QRp,满足封闭性
- 结合律
设任意三个元素
m
1
,
m
2
,
m
3
∈
Q
R
p
m_{1},m_{2},m_{3}\in\mathbb{QR}_{p}
m1,m2,m3∈QRp,则存在
x
1
,
x
2
,
x
3
∈
Z
p
∗
x_{1},x_{2},x_{3}\in\mathbb{Z}_{p}^{*}
x1,x2,x3∈Zp∗,使得
m
1
≡
x
1
2
m
o
d
p
m
2
≡
x
2
2
m
o
d
p
m
3
≡
x
3
2
m
o
d
p
m_{1}\equiv x_{1}^{2} \mod p \\ m_{2}\equiv x_{2}^{2} \mod p \\ m_{3}\equiv x_{3}^{2} \mod p
m1≡x12modpm2≡x22modpm3≡x32modp
则
m
1
(
m
2
m
3
)
≡
x
1
2
(
x
2
2
x
3
2
)
≡
(
x
1
2
x
2
2
)
x
3
2
≡
(
m
1
m
2
)
m
3
m
o
d
p
m_{1}(m_{2}m_{3})\equiv x_{1}^{2}(x_{2}^{2}x_{3}^{2})\equiv (x_{1}^{2}x_{2}^{2})x_{3}^{2}\equiv(m_{1}m_{2})m_{3} \mod p
m1(m2m3)≡x12(x22x32)≡(x12x22)x32≡(m1m2)m3modp,故满足结合律
- 单位元
易知模p下1是平方数,故群 Q R p \mathbb{QR}_{p} QRp有单位元1
- 逆元
设任意元素
m
∈
Q
R
p
m\in\mathbb{QR}_{p}
m∈QRp,则存在
x
∈
Z
p
∗
x\in\mathbb{Z}_{p}^{*}
x∈Zp∗,使得
m
≡
x
2
m
o
d
p
m\equiv x^{2} \mod p
m≡x2modp
而
x
∈
Z
p
∗
x\in\mathbb{Z}_{p}^{*}
x∈Zp∗,所以存在一个逆元
x
−
1
x^{-1}
x−1 使得
x
x
−
1
≡
1
m
o
d
p
xx^{-1}\equiv 1 \mod p
xx−1≡1modp
则有
m
(
x
−
1
)
2
≡
x
2
(
x
−
1
)
2
≡
1
m
o
d
p
m(x^{-1})^{2}\equiv x^{2}(x^{-1})^{2}\equiv 1 \mod p
m(x−1)2≡x2(x−1)2≡1modp,故
m
m
m 模p下存在一个逆元为
(
x
−
1
)
2
(x^{-1})^{2}
(x−1)2,记作
m
−
1
m^{-1}
m−1,而
m
−
1
m^{-1}
m−1 显然是模p的平方数,即
m
−
1
∈
Q
R
p
m^{-1}\in\mathbb{QR}_{p}
m−1∈QRp ,故存在逆元
2、群论的方法证明定理11.1
设
Q
R
\mathrm{QR}
QR 所构成的群为
Q
R
p
\mathbb{QR}_{p}
QRp ,定义一个映射
ψ
:
Z
p
∗
→
Q
R
p
,
ψ
(
a
)
=
a
2
\psi:\mathbb{Z}_{p}^{*}\rightarrow\mathbb{QR}_{p},\psi(a)=a^{2}
ψ:Zp∗→QRp,ψ(a)=a2,由于
ψ
(
m
n
)
=
(
m
n
)
2
=
m
2
n
2
=
ψ
(
m
)
ψ
(
n
)
\psi(mn)=(mn)^{2}=m^{2}n^{2}=\psi(m)\psi(n)
ψ(mn)=(mn)2=m2n2=ψ(m)ψ(n),故映射
ψ
\psi
ψ 是一个群同态映射。
并且易知映射 ψ \psi ψ 的 K e r n e l \mathrm{Kernel} Kernel 为 { 1 , p − 1 } \{1,p-1\} {1,p−1} ,记作 K K K,则有商群 Z p / K \mathbb{Z}_{p}/K Zp/K ,且存在一个标准同态 ϕ : Z p → Z p / K \phi:\mathbb{Z}_{p}\rightarrow \mathbb{Z}_{p}/K ϕ:Zp→Zp/K,根据商群的定义以及拉格朗日定理可得: ∣ Z p / K ∣ = [ Z p : K ] = ∣ Z p ∣ / ∣ K ∣ = ( p − 1 ) / 2 |\mathbb{Z}_{p}/K|=[\mathbb{Z}_{p}:K]=|\mathbb{Z}_{p}|/|K|=(p-1)/2 ∣Zp/K∣=[Zp:K]=∣Zp∣/∣K∣=(p−1)/2
再根据第一同构定理,映射 η : Z p / K → Q R p \eta:\mathbb{Z}_{p}/K\rightarrow \mathbb{QR}_{p} η:Zp/K→QRp 是一个群同构,故有 ∣ Q R p ∣ = ∣ Z p / K ∣ = ( p − 1 ) / 2 |\mathbb{QR}_{p}|=|\mathbb{Z}_{p}/K|=(p-1)/2 ∣QRp∣=∣Zp/K∣=(p−1)/2,即 Q R \mathrm{QR} QR 共有 ( p − 1 ) / 2 (p-1)/2 (p−1)/2 个,而 Q N R \mathrm{QNR} QNR 即是 Z p \mathbb{Z}_{p} Zp 中另外的 ( p − 1 ) / 2 (p-1)/2 (p−1)/2 个,证毕
3、定义映射 ψ : z p ∗ → { ± 1 } , ψ ( a ) = ( a p ) , ∀ a ∈ z p ∗ \psi:z_{p}^{*}\rightarrow\{\pm1\},\psi(a)=(\frac{a}{p}),\forall a\in z_{p}^{*} ψ:zp∗→{±1},ψ(a)=(pa),∀a∈zp∗,证明该映射是一个满同态
设
m
,
n
∈
z
p
∗
m,n\in z_{p}^{*}
m,n∈zp∗ ,则
ψ
(
m
n
)
=
(
m
n
p
)
=
(
m
p
)
(
n
p
)
=
ψ
(
m
)
ψ
(
n
)
\psi(mn)=(\frac{mn}{p})=(\frac{m}{p})(\frac{n}{p})=\psi(m)\psi(n)
ψ(mn)=(pmn)=(pm)(pn)=ψ(m)ψ(n),故映射
ψ
\psi
ψ 是一个同态映射。
而
p
p
p 是素数,根据定理1.1可知,模
p
p
p 的
Q
R
\mathrm{QR}
QR 有
(
p
−
1
)
/
2
(p-1)/2
(p−1)/2 个,
Q
N
R
\mathrm{QNR}
QNR 有
(
p
−
1
)
/
2
(p-1)/2
(p−1)/2 个,则群
z
p
∗
z_{p}^{*}
zp∗ 中所有元素分别通过映射
ψ
(
a
)
=
(
a
p
)
\psi(a)=(\frac{a}{p})
ψ(a)=(pa),映射到+1或者-1上,故映射
ψ
\psi
ψ 是一个满射。
综上,该映射是一个满同态
4、设p是奇素数,证明 z p ∗ z_{p}^{*} zp∗ 的所有生成元都是模p的二次非剩余
设
a
a
a 为
Z
p
∗
\mathbb{Z}_{p}^{*}
Zp∗ 的生成元,则
∀
x
∈
Z
p
∗
\forall x\in\mathbb{Z}_{p}^{*}
∀x∈Zp∗,都有
a
k
=
x
,
k
∈
Z
a^{k}=x,k\in \mathbb{Z}
ak=x,k∈Z,
假设
a
a
a 是模
p
p
p 的二次剩余
Q
R
\mathrm{QR}
QR,又因为
Q
R
×
Q
R
=
Q
R
\mathrm{QR}\times \mathrm{QR}=\mathrm{QR}
QR×QR=QR,则
a
k
=
Q
R
k
=
Q
R
,
k
∈
Z
a^{k}=\mathrm{QR}^{k}=\mathrm{QR},k\in \mathbb{Z}
ak=QRk=QR,k∈Z,
故当
x
x
x 为
Z
p
∗
\mathbb{Z}_{p}^{*}
Zp∗ 中的
Q
N
R
\mathrm{QNR}
QNR 时,产生矛盾,则生成元
a
a
a 不可能是二次剩余
Q
R
\mathrm{QR}
QR,所以
z
p
∗
z_{p}^{*}
zp∗ 的所有生成元都是模p的二次非剩余
5、证明命题11.4
- 同余式得出勒让德符号相等
当a为模p的QR时,则有
a
≡
b
≡
x
2
m
o
d
p
a\equiv b\equiv x^{2} \mod p
a≡b≡x2modp,故b也是模p的QR,则有
(
a
p
)
=
(
b
p
)
(\frac{a}{p})=(\frac{b}{p})
(pa)=(pb) ,
当a为模p的QNR时,则有
a
≡
b
≢
x
2
m
o
d
p
a\equiv b\not\equiv x^{2} \mod p
a≡b≡x2modp,故b也是模p的QNR,则有
(
a
p
)
=
(
b
p
)
(\frac{a}{p})=(\frac{b}{p})
(pa)=(pb)
综上,
a
≡
b
m
o
d
p
a\equiv b\mod p
a≡bmodp,则
(
a
p
)
=
(
b
p
)
(\frac{a}{p})=(\frac{b}{p})
(pa)=(pb) ,证毕
- 勒让德符号相乘
当a是模p的QR,b也是模p的QR时,ab为QR x QR,仍为QR,故
(
a
p
)
(
b
p
)
=
1
∗
1
=
1
=
(
a
b
p
)
(\frac{a}{p})(\frac{b}{p})=1*1=1=(\frac{ab}{p})
(pa)(pb)=1∗1=1=(pab)
当a,b其中一个是模p的QR,另一个是模p的QNR时,ab为QR x QNR或者QNR x QR,结果为QNR,故
(
a
p
)
(
b
p
)
=
1
∗
(
−
1
)
=
(
−
1
)
∗
1
=
−
1
=
(
a
b
p
)
(\frac{a}{p})(\frac{b}{p})=1*(-1)=(-1)*1=-1=(\frac{ab}{p})
(pa)(pb)=1∗(−1)=(−1)∗1=−1=(pab)
当a是模p的QNR,b也是模p的QNR时,ab为QNR*QNR,结果为QR,故
(
a
p
)
(
b
p
)
=
(
−
1
)
∗
(
−
1
)
=
1
=
(
a
b
p
)
(\frac{a}{p})(\frac{b}{p})=(-1)*(-1)=1=(\frac{ab}{p})
(pa)(pb)=(−1)∗(−1)=1=(pab) ,证毕
- 平方数的勒让德符号为1
a ∈ Z a\in\mathbb{Z} a∈Z,故 a 2 a^{2} a2 是模p的平方数,即 a 2 a^{2} a2 是模p的QR,故 ( a 2 p ) = 1 (\frac{a^{2}}{p})=1 (pa2)=1
6、证明推论11.1
因为p是一个奇素数,根据欧拉准则可得:
(
−
1
p
)
≡
(
−
1
)
(
p
−
1
)
/
2
m
o
d
p
(\frac{-1}{p})\equiv (-1)^{(p-1)/2} \mod p
(p−1)≡(−1)(p−1)/2modp
当
p
≡
1
m
o
d
4
p\equiv 1 \mod 4
p≡1mod4 时,则有
p
=
4
k
+
1
,
k
∈
Z
p=4k+1,k\in\mathbb{Z}
p=4k+1,k∈Z,则
(
−
1
p
)
≡
(
−
1
)
(
p
−
1
)
/
2
≡
(
−
1
)
(
4
k
+
1
−
1
)
/
2
≡
1
m
o
d
p
(\frac{-1}{p})\equiv (-1)^{(p-1)/2}\equiv(-1)^{(4k+1-1)/2} \equiv 1 \mod p
(p−1)≡(−1)(p−1)/2≡(−1)(4k+1−1)/2≡1modp
当 p ≡ − 1 m o d 4 p\equiv -1 \mod 4 p≡−1mod4 时,则有 p = 4 k − 1 , k ∈ Z p=4k-1,k\in\mathbb{Z} p=4k−1,k∈Z,则 ( − 1 p ) ≡ ( − 1 ) ( p − 1 ) / 2 ≡ ( − 1 ) ( 4 k − 1 − 1 ) / 2 ≡ − 1 m o d p (\frac{-1}{p})\equiv (-1)^{(p-1)/2}\equiv(-1)^{(4k-1-1)/2}\equiv -1 \mod p (p−1)≡(−1)(p−1)/2≡(−1)(4k−1−1)/2≡−1modp
综上,证毕