cinta作业7:同态同构商群正规子群

1.如果 H 1 \mathbb{H}_{1} H1 H 2 \mathbb{H}_{2} H2是群 G \mathbb{G} G 的正规子群,证明 H 1 \mathbb{H}_{1} H1 H 2 \mathbb{H}_{2} H2也是群 G \mathbb{G} G的正规子群

  • 证明 g H 1 H 2 = H 1 H 2 g g\mathbb{H}_{1}\mathbb{H}_{2}=\mathbb{H}_{1}\mathbb{H}_{2}g gH1H2=H1H2g

因为 H 1 \mathbb{H}_{1} H1 H 2 \mathbb{H}_{2} H2是群 G \mathbb{G} G的正规子群,则有 ∀ g ∈ G , g H 1 = H 1 g , g H 2 = H 2 g \forall g \in\mathbb{G},g\mathbb{H}_{1}=\mathbb{H}_{1}g,g\mathbb{H}_{2}=\mathbb{H}_{2}g gG,gH1=H1g,gH2=H2g,则 ∀ g ∈ G , g H 1 H 2 = H 1 g H 2 = H 1 H 2 g \forall g \in \mathbb{G},g\mathbb{H}_{1}\mathbb{H}_{2}=\mathbb{H}_{1}g\mathbb{H}_{2}=\mathbb{H}_{1}\mathbb{H}_{2}g gG,gH1H2=H1gH2=H1H2g

  • 证明 H 1 H 2 \mathbb{H}_{1}\mathbb{H}_{2} H1H2 是群 G \mathbb{G} G 的子群

∀ a , b ∈ H 1 H 2 \forall a,b\in\mathbb{H}_{1}\mathbb{H}_{2} a,bH1H2,则有 a = h a 1 h a 2 , b = h b 1 h b 2 a=h_{a1}h_{a2},b=h_{b1}h_{b2} a=ha1ha2,b=hb1hb2

  1. 因为 H 1 \mathbb{H}_{1} H1 H 2 \mathbb{H}_{2} H2是群 G \mathbb{G} G的子群,所以在 H 1 H 2 \mathbb{H}_{1}\mathbb{H}_{2} H1H2 上显然有单位元,结合律也显然满足。

  2. 证明 a ⋅ b ∈ H 1 H 2 a\cdot b\in\mathbb{H}_{1}\mathbb{H}_{2} abH1H2
    a ⋅ b = h a 1 h a 2 ⋅ h b 1 h b 2 a\cdot b=h_{a1}h_{a2}\cdot h_{b1}h_{b2} ab=ha1ha2hb1hb2,由于 g H 1 H 2 = H 1 H 2 g g\mathbb{H}_{1}\mathbb{H}_{2}=\mathbb{H}_{1}\mathbb{H}_{2}g gH1H2=H1H2g,则必有 h a 2 H 1 H 2 = H 1 H 2 h a 2 h_{a2}\mathbb{H}_{1}\mathbb{H}_{2}=\mathbb{H}_{1}\mathbb{H}_{2}h_{a2} ha2H1H2=H1H2ha2
    且一定存在 ( h b 1 − 1 ) ′ , ( h b 2 − 1 ) ′ ∈ H 1 (h_{b1}^{-1})',(h_{b2}^{-1})'\in \mathbb{H}_{1} (hb11),(hb21)H1,使得 h a 2 ⋅ h b 1 h b 2 = ( h b 1 − 1 ) ′ ( h b 2 − 1 ) ′ ⋅ h a 2 h_{a2}\cdot h_{b1}h_{b2}=(h_{b1}^{-1})'(h_{b2}^{-1})'\cdot h_{a2} ha2hb1hb2=(hb11)(hb21)ha2
    a ⋅ b = h a 1 h a 2 ⋅ h b 1 h b 2 = h a 1 ( h b 1 − 1 ) ′ ( h b 2 − 1 ) ′ ⋅ h a 2 = h a 1 ( h b 1 − 1 ) ′ ⋅ ( h b 2 − 1 ) ′ h a 2 a\cdot b=h_{a1}h_{a2}\cdot h_{b1}h_{b2}=h_{a1}(h_{b1}^{-1})'(h_{b2}^{-1})'\cdot h_{a2}=h_{a1}(h_{b1}^{-1})'\cdot(h_{b2}^{-1})' h_{a2} ab=ha1ha2hb1hb2=ha1(hb11)(hb21)ha2=ha1(hb11)(hb21)ha2,因为 h a 1 ( h b 1 − 1 ) ′ ∈ H 1 , ( h b 2 − 1 ) ′ h a 2 ∈ H 2 h_{a1}(h_{b1}^{-1})'\in \mathbb{H}_{1},(h_{b2}^{-1})' h_{a2}\in \mathbb{H}_{2} ha1(hb11)H1,(hb21)ha2H2,所以 a ⋅ b ∈ H 1 H 2 a\cdot b\in\mathbb{H}_{1}\mathbb{H}_{2} abH1H2

  3. 证明 a − 1 ∈ H 1 H 2 a^{-1}\in\mathbb{H}_{1}\mathbb{H}_{2} a1H1H2
    若有 a a − 1 = e aa^{-1}=e aa1=e,则易知 a − 1 = h a 2 − 1 h a 1 − 1 a^{-1}=h_{a2}^{-1}h_{a1}^{-1} a1=ha21ha11
    又因为 H 1 \mathbb{H}_{1} H1 是正规子群,则必有 h a 2 − 1 H 1 = H 1 h a 2 − 1 h_{a2}^{-1}\mathbb{H}_{1}=\mathbb{H}_{1}h_{a2}^{-1} ha21H1=H1ha21,且一定存在 ( h a 1 − 1 ) ′ ∈ H 1 (h_{a1}^{-1})'\in \mathbb{H}_{1} (ha11)H1,使得 h a 2 − 1 h a 1 − 1 = ( h a 1 − 1 ) ′ h a 2 − 1 h_{a2}^{-1}h_{a1}^{-1}=(h_{a1}^{-1})'h_{a2}^{-1} ha21ha11=(ha11)ha21
    则有 a − 1 = h a 2 − 1 h a 1 − 1 = ( h a 1 − 1 ) ′ h a 2 − 1 a^{-1}=h_{a2}^{-1}h_{a1}^{-1}=(h_{a1}^{-1})'h_{a2}^{-1} a1=ha21ha11=(ha11)ha21,因为 ( h a 1 − 1 ) ′ ∈ H 1 , h a 2 − 1 ∈ H 2 (h_{a1}^{-1})'\in \mathbb{H}_{1},h_{a2}^{-1}\in\mathbb{H}_{2} (ha11)H1,ha21H2,所以 a − 1 = ( h a 1 − 1 ) ′ h a 2 − 1 ∈ H 1 H 2 a^{-1}=(h_{a1}^{-1})'h_{a2}^{-1}\in\mathbb{H}_{1}\mathbb{H}_{2} a1=(ha11)ha21H1H2

综上, H 1 \mathbb{H}_{1} H1 H 2 \mathbb{H}_{2} H2是群 G \mathbb{G} G的正规子群


2.定义映射 ϕ : G ↦ G \phi:\mathbb{G}\mapsto \mathbb{G} ϕ:GG ϕ : g ↦ g 2 \phi:g\mapsto g^{2} ϕ:gg2。请证明 ϕ \phi ϕ 是一种群同态当且仅当 G \mathbb{G} G 是阿贝尔群

充分性证明:

因为 ϕ \phi ϕ 是一种群同态,则群操作应得以保持,即 ∀ m , n ∈ G , Φ ( m ⋅ n ) = Φ ( m ) ⋅ Φ ( n ) \forall m,n \in \mathbb{G} ,\Phi(m\cdot n)=\Phi(m)\cdot \Phi(n) m,nG,Φ(mn)=Φ(m)Φ(n)成立,则有 ( m n ) 2 = m 2 n 2 (mn)^{2}=m^{2}n^{2} (mn)2=m2n2,展开可得 m n m n = m 2 n 2 mnmn=m^{2}n^{2} mnmn=m2n2
对于此式子,我们两边同时在左侧乘以 m m m 的逆元,在右侧乘以 n n n 的逆元,即是 m − 1 m n m n n − 1 = m − 1 m 2 n 2 n − 1 m^{-1}mnmnn^{-1}=m^{-1}m^{2}n^{2}n^{-1} m1mnmnn1=m1m2n2n1,化简便可得 n m = m n nm=mn nm=mn,故 G \mathbb{G} G 是阿贝尔群。

必要性证明:

∀ m , n ∈ G , 则 有 Φ ( m ⋅ n ) = ( m n ) 2 = m n m n \forall m,n \in \mathbb{G} ,则有\Phi(m\cdot n)=(mn)^{2}=mnmn m,nG,Φ(mn)=(mn)2=mnmn
而因为 G \mathbb{G} G 是阿贝尔群,则有 m n = n m mn=nm mn=nm,故 Φ ( m ⋅ n ) = m m n n = m 2 ⋅ n 2 = Φ ( m ) ⋅ Φ ( n ) \Phi(m\cdot n)=mmnn=m^{2} \cdot n^{2}=\Phi(m)\cdot\Phi(n) Φ(mn)=mmnn=m2n2=Φ(m)Φ(n),故群操作得以保持, ϕ \phi ϕ 是一种群同态


3.证明 H \mathbb{H} H 是群 G \mathbb{G} G 上指标为2的子群,则 H \mathbb{H} H G \mathbb{G} G 的正规子群

  • g ∈ H g\in\mathbb{H} gH,由于封闭性, g H = H g = H g\mathbb{H}=\mathbb{H}g=\mathbb{H} gH=Hg=H,满足正规子群性质
  • g ∉ H g\notin\mathbb{H} g/H,由于陪集性质, g H ≠ H g\mathbb{H}\neq\mathbb{H} gH=H H g ≠ H \mathbb{H}g\neq\mathbb{H} Hg=H
    又因为 [ G : H ] = 2 [\mathbb{G}:\mathbb{H}]=2 [G:H]=2,即群 G \mathbb{G} G 被子群 H \mathbb{H} H 的两个陪集划分,其中一个陪集是 H \mathbb{H} H 本身,另一个陪集记为 H ′ \mathbb{H'} H
    而又因为作为陪集的 g H , H g g\mathbb{H},\mathbb{H}g gH,Hg都是不等于 H \mathbb{H} H的,则 g H , H g g\mathbb{H},\mathbb{H}g gH,Hg一定都等于 H ′ \mathbb{H'} H ,即 g H = H g = H ′ g\mathbb{H}=\mathbb{H}g=\mathbb{H'} gH=Hg=H,满足正规子群性质

综上 H \mathbb{H} H G \mathbb{G} G 的正规子群


4. 证明:如果群 G \mathbb{G} G 是循环群,则商群 G / H \mathbb{G}/\mathbb{H} G/H 也是循环群

g g g 是群 G \mathbb{G} G 的生成元,构造式子 ( g H ) k (g\mathbb{H})^{k} (gH)k,因为群 G \mathbb{G} G 是循环群,具有交换性,所以可得 ( g H ) k = g k H (g\mathbb{H})^{k}=g^{k}\mathbb{H} (gH)k=gkH
又因为 g g g 是群 G \mathbb{G} G 的生成元,即 g k g^{k} gk 生成了 G \mathbb{G} G 中的所有元素,又根据商群 G / H \mathbb{G}/\mathbb{H} G/H中的元素是 H \mathbb{H} H G \mathbb{G} G 上的所有陪集的定义,所以 g k H g^{k}\mathbb{H} gkH 可以生成商群 G / H \mathbb{G}/\mathbb{H} G/H中的所有元素,即 ( g H ) k (g\mathbb{H})^{k} (gH)k可以生成商群 G / H \mathbb{G}/\mathbb{H} G/H中的所有元素,而 g H ∈ G / H g\mathbb{H}\in\mathbb{G}/\mathbb{H} gHG/H,故商群 G / H \mathbb{G}/\mathbb{H} G/H 也是循环群。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GOAT_0x02

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值