[COCI2008-2009#2] PERKET
题目描述
Perket 是一种流行的美食。为了做好 Perket,厨师必须谨慎选择食材,以在保持传统风味的同时尽可能获得最全面的味道。你有 n n n 种可支配的配料。对于每一种配料,我们知道它们各自的酸度 s s s 和苦度 b b b。当我们添加配料时,总的酸度为每一种配料的酸度总乘积;总的苦度为每一种配料的苦度的总和。
众所周知,美食应该做到口感适中,所以我们希望选取配料,以使得酸度和苦度的绝对差最小。
另外,我们必须添加至少一种配料,因为没有任何食物以水为配料的。
输入格式
第一行一个整数 n n n,表示可供选用的食材种类数。
接下来 n n n 行,每行 2 2 2 个整数 s i s_i si 和 b i b_i bi,表示第 i i i 种食材的酸度和苦度。
输出格式
一行一个整数,表示可能的总酸度和总苦度的最小绝对差。
样例 #1
样例输入 #1
1
3 10
样例输出 #1
7
样例 #2
样例输入 #2
2
3 8
5 8
样例输出 #2
1
样例 #3
样例输入 #3
4
1 7
2 6
3 8
4 9
样例输出 #3
1
提示
数据规模与约定
对于 100 % 100\% 100% 的数据,有 1 ≤ n ≤ 10 1 \leq n \leq 10 1≤n≤10,且将所有可用食材全部使用产生的总酸度和总苦度小于 1 × 1 0 9 1 \times 10^9 1×109,酸度和苦度不同时为 1 1 1 和 0 0 0。
说明
- 本题满分 70 70 70 分。
- 题目译自 COCI2008-2009 CONTEST #2 PERKET,译者 @mnesia。
分析
- 题目上面说的是配料,下面说的是食材,刚开始给我整懵逼了,其实食材就是配料,配料就是食材;当我们添加配料时,总的酸度为每一种配料的酸度总乘积;总的苦度为每一种配料的苦度的总和。要理解这句话,以样例3为例,酸苦差值最小时:选 2 6,3 8,4 9 这三种食材,总酸度234,总苦度为6+8+9,差值为1;
- 每种食材都有选与不选两种选择,和上题的考前抱佛脚一样,可以选也可以不选(上题是可以放在左脑也可以放在右脑)。思想一样,然后直接从第一种食材开始搜素:要的话累加酸度和苦度,dfs下一种食材;不要的话减去上面累加的酸度和苦度(回溯),再去dfs下一种食材。
- 需要注意在选择最优解时,加上if (!(ss == 1 && bb == 0)),避免把初始值(也就是一种食材没选)的差值1误当做答案;
#include<bits/stdc++.h>
using namespace std;
int n, ans = 1000000;
int s[15];//每种食材的酸度
int b[15];//每种食材的苦度
int ss = 1, bb = 0;//总酸度、总苦度
//u:当前搜第几种食材
void dfs(int u) {
if (u > n) {
//避免把初始值(也就是一种食材没选)的差值1误当做答案
if (!(ss == 1 && bb == 0))
ans = min(ans, abs(ss - bb));
return;
}
//选
ss *= s[u];
bb += b[u];
dfs(u + 1);
//不选
ss /= s[u];
bb -= b[u];
dfs(u + 1);
}
int main() {
std::ios::sync_with_stdio(false);
cin.tie(nullptr);
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> s[i] >> b[i];
}
dfs(1);
cout << ans;
return 0;
}