每日一题(2022-04-26)—— 三维形体投影面积

883. 三维形体投影面积

题目描述

n x n 的网格 grid 中,我们放置了一些与 x,y,z 三轴对齐的 1 x 1 x 1 立方体。
每个值 v = grid[i][j] 表示 v 个正方体叠放在单元格 (i, j) 上。
现在,我们查看这些立方体在 xy 、yz 和 zx 平面上的投影。
投影 就像影子,将 三维 形体映射到一个 二维 平面上。从顶部、前面和侧面看立方体时,我们会看到“影子”。
返回 所有三个投影的总面积 。

在这里插入图片描述

思路

正视图:每一行最大值之和;

侧视图:每一列最大值之和;

俯视图:柱子个数;

题解

func projectionArea(grid [][]int) int {
	n := len(grid)
	xoyProjectionArea, yozProjectionArea, xozProjectionArea := 0, 0, 0
	for i := 0; i < n; i++ {
		rowMax, colMax := math.MinInt64, math.MinInt64
		for j := 0; j < n; j++ {
			if len(grid)>i {
				if len(grid[i])>j {
					// 俯视图: 柱子数
					if grid[i][j] != 0 {
						xoyProjectionArea++
					}
					rowMax = max(rowMax, grid[i][j])
				}
			}
			if len(grid)>j {
				if len(grid[j])>i {
					colMax = max(colMax, grid[j][i])
				}
			}
		}
		// 侧视图: 每一列的最大值之和
		yozProjectionArea += rowMax
		// 正视图: 每一行的最大值之和
		xozProjectionArea += colMax
	}
	return xozProjectionArea + xoyProjectionArea + yozProjectionArea
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

提交结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值