完美立方数
描述
费马大定理断言,当整数 n > 2时,关于 a,b,c 的方程 a** n = b** n + c** n 没有正整数解。
该定理被提出来后,历经三百多年,经历多人猜想辩证,最终在 1995 年被英国数学家安德鲁.怀尔斯证明。
当然,可以找到大于 1 的 4 个整数满足完美立方等式:a** 3 = b** 3 + c** 3 + d** 3 (例如 12** 3 = 6** 3 + 8** 3 + 10** 3)
编写一个程序,对于任意给定的正整数 N(N<=100),寻找所有的四元组(a,b,c,d),满足
a** 3 = b** 3 + c** 3 + d** 3
其中 1 < a,b,c,d <=N
输入格式
正整数 N(N <= 100)
输出格式
按照 a 的值从小到大,每行输出一个完美立方等式,其中b,c,d按照非降序排列输出。
(若两个完美立方式中 a 值相同,则 b 值小的先输出;在 b 值相等的情况下&#x