文章目录
I 考试科目
高等数学、线性代数
II考试形式和试卷结构
一、试卷满分及考试时间
试卷满分为150分,考试时间为180分钟
二、答题方式
答题方式为闭卷、笔试
三、试卷内容结构
高等教学 约80%
线性代数 约20%
四、试卷题型结构
单项选择题10小题,每小题5分,共50分
填空题6小题,每小题5分,共30分
解答题(包括证明题)6小题,共70分
III考查内容
【高等数学】
一、函数、极限、连续
【考试内容】
函数的概念及表示法
函数的有界性、单调性、周期性和奇偶性
复合函数、反函数、分段函数和隐函数
基本初等函数的性质及其图形
初等函数
函数关系的建立
数列极限与函数极限的定义及其性质
函数的左极限与右极限
无穷小量和无穷大量的概念及其关系
无穷小量的性质及无穷小量的比较
极限的四则运算
极限存在的两个准则:单调有界准则和夹逼准则
两个重要极限:
函数连续的概念
函数间断点的类型
初等函数的连续性
闭区间上连续函数的性质
【考试要求】
- 理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系。
- 了解函数的有界性、单调性、周期性和奇偶性。
- 理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
- 掌握基本初等函数的性质及其图形,了解初等函数的概念。
- 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系。
- 掌握极限的性质及四则运算法则。
- 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
- 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
- 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
- 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
二、一元函数微分学
【考试内容】
导数和微分的概念
导数的几何意义和物理意义
函数的可导性与连续性之间的关系
平面曲线的切线和法线
导数和微分的四则