计算流体力学
文章平均质量分 83
百宝袋里是数学和代码
这个作者很懒,什么都没留下…
展开
-
有限元法计算二维圆柱绕流问题——无粘有环量的情况
写在前面该系列文章是笔者的学习记录,旨在通过分享促进交流加深理解,文中难免有许多纰漏与理解不当之处,若能批评指正必定感激不尽。侧重分享经典CFD方法的具体实现结果,详细的理论推导请参考教材。原创 2023-06-29 05:12:46 · 2121 阅读 · 1 评论 -
二维不可压缩方腔驱动流数值解——基于涡量流函数方程
写在前面该系列文章是笔者的学习记录,旨在通过分享促进交流加深理解,文中难免有许多纰漏与理解不当之处,若能批评指正必定感激不尽。侧重分享经典CFD方法的具体实现结果,详细的理论推导请参考教材。原创 2023-06-24 13:28:49 · 1495 阅读 · 1 评论 -
有限元法计算二维圆柱绕流问题——Python代码实现
选取流函数Ψ为变量,对拉普拉斯方程进行求解(右边界为自然边界条件,其余边界为本质边界条件);网格数据文件的生成暂时不在本文中详述。原创 2023-05-11 02:07:33 · 1680 阅读 · 2 评论 -
【计算流体力学】Python实现加权余量法求微分方程数值解 比较伽辽金法(Galerkin法)、最小二乘法和矩法的求解精度 分析误差随n增大的变化情况
微分方程的经典数值方法有Ritz法、加权余量法、有限元法、有限体积法等等。对于微分方程的边值问题,如果能找到与微分方程相对应的泛函,可以通过求取相应泛函的极小值,将微分方程转化为关于基函数待定系数的代数方程。典型的近似方法如Ritz法。然而,流体力学中的方程通常是非线性的,难以找到泛函,此时可以使用加权余量法。研究微分方程(在区域D内),满足边界条件(在边界S上),其中L和B为微分算子。取微分方程的近似解,要求基函数的选取满足边界条件。原创 2023-04-29 16:52:41 · 1872 阅读 · 2 评论