二维不可压缩方腔驱动流数值解——基于涡量流函数方程

写在前面

  • 该系列文章是笔者的学习记录,旨在通过分享促进交流加深理解,文中难免有许多纰漏与理解不当之处,若能批评指正必定感激不尽。

  • 侧重分享经典CFD方法的具体实现结果,详细的理论推导请参考教材。

一、涡量流函数方程以及求解流程

涡量流函数方程:

\frac{\partial w}{\partial t} + (\mathbf{v} \cdot \triangledown )w=v\triangle w \\ \\ \triangledown \psi = -w \\\\ u = \frac{\partial \psi}{\partial y} ~~ v= - \frac{\partial \psi}{\partial x}

边界条件:

\psi = \psi_{b} ~or~ \frac{\partial \psi}{\partial n}=-v_{\tau}

在给定 n 时刻涡量分布\left \{ w_{i,j}^{n} \right \} 的情况下,采取如下的步骤计算出下一时刻的涡量分布 \left \{ w_{i,j}^{n+1} \right \} :

  1. 计算 n+1 时刻内点的涡量(FTCS:空间导数项采用中心差分格式离散,时间导数项采用向前Euler法离散;时间一阶精度,空间二阶精度)
    \frac{w^{n+1}-w^{n}}{\Delta t} + D_{y} \psi^{n}D_{x} w^{n} - D_{x} \psi^{n}D_{y} w^{n} = \nu \triangle _{h} w^{n}
    其中D_{x}w_{i,j} = \frac{w_{i+1,j}-w_{i-1,j}}{2 \Delta x} \\ D_{y}w_{i,j} = \frac{w_{i,j+1}-w_{i,j-1}}{2 \Delta y}是标准的中心差分格式,\triangle _{h}w_{i,j} = \frac{w_{i+1,j}-2w_{i,j}+w_{i-1,j}}{\Delta x^{2}} + \frac{w_{i,j+1}-2w_{i,j}+w_{i,j-1}}{\Delta y^{2}}是离散的五点Laplace算子。
  2. 计算 n+1 时刻的流函数,差分方程和边界条件如下(中心差分,二阶精度)
    \left\{\begin{matrix} \triangle _{h}\psi^{n+1} = - w^{n+1} \\ \psi^{n+1} |_{\Gamma} = \psi_{b} \end{matrix}\right.
    为加快解方程组速度,采用泊松方程求解常用的SOR迭代公式   (\beta = \Delta x / \Delta y),0<w<2 为松弛因子:\psi_{i,j}^{t+1} = \psi_{i,j}^{t}+ \frac{w}{2(1+\beta^{2})}[ \psi_{i+1,j}^{t}+\psi_{i-1,j}^{t+1} + \beta^{2}(\psi_{i,j+1}^{t}+\psi_{i,j-1}^{t+1}) + \Delta x^{2} w_{i,j} ^{n+1}-2(1+\beta^{2})\psi_{i,j}^{t} ]
  3. 计算 n+1 时刻边界上的涡量:
    一般形式下的Thom壁涡公式w_{0} = - \frac{2(\psi_{1}-\psi_{0}+ v_{\tau}h)}{h^{2}}
    假设某壁面切向速度 v_{\tau} ,沿其内法向 \mathbf{n} 有一节点,距离壁面距离为 h ,此点上的流函数值为 \psi_{1} ,如果壁面上的流函数值为 \psi_{0} ,那么在边界是流线的情况下有:w_{0} = - \frac{2(\psi_{1}-\psi_{0}+ v_{\tau}h)}{h^{2}} (注意,这里的切方向\tau规定为内法向量\mathbf{n}逆时针旋转90°后的方向)
    Woods壁涡公式(更高精度)w_{0}=-\frac{1}{2}w_{1}-\frac{3}{h^{2}}(\psi_{1}-\psi_{0})-\frac{3}{h}v_{\tau}-\frac{3}{2}\frac{\partial v_{n}}{\partial \tau} + \frac{h}{2}\frac{\partial ^{2}v_{\tau}}{\partial \tau^{2}},含义同上

二、二维方腔流动问题

        在单位正方形方腔内,充满粘性不可压缩流体,初始时刻流体静止不动,上壁面以均匀速度1运动,, 而其余三个壁面固定不动。由于是粘性流体, 将会使整个方腔内的流体运动起来,一定时间后达到稳定状态。
  • 边界条件:
    为了避免速度场在角点附近的奇性,可以对上边界给出一个速度分布v_{\tau}(x)=16x^{2}(1-x)^{2}其余边界处为无滑移边界条件,即 v_{\tau}=0 ;
    因为所有的边界都是固壁边界,不妨设边界上流函数 \psi|_{\Gamma} = 0 。
  • 初始条件:
    初始时刻流体静止,内点速度均为0;根据初始速度分布计算初始的内点涡量(中心差分);流函数求解泊松方程得到。

三、计算结果

1. 中间线上的速度分布比较(上边界速度设为1,便于比较)

注:

  • 基准数据来源于文献"High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method"

  • 文献中采用了加密且优化的网格,我们的计算采用的是均分网格。

  • 文献中设置驱动边界上速度等于1,为便于比较,在这一部分将上边界速度设置为1,而不采用v_{\tau}(x)=16x^{2}(1-x)^{2}的光滑的速度分布。

Re=100

图1-1(a)(101*101,dt = 0.002,20000步)
图1-1(b)

Re=400 

图1-2(a)(101*101,dt = 0.002,20000步)
图1-2(b)​​​​​

Re= 1000

图1-3(a)(101*101,dt = 0.002,40000步)
图1-4(b)
  •  可以看到,在雷诺数不超过1000时,我们的计算结果是很准确的。

Re=3200

图1-4(a)(101*101,dt = 0.002,70000步)
图1-3(b)

Re = 5000

图1-5(a)(101*101,dt = 0.002,500000步)
图1-5(b)
  • 雷诺数大于3200时,由于文献中采用了加密且优化的网格,我们的计算结果与文献数据有微小偏差,特别是靠近边界处误差较大;但大体趋势依然是可信的。
  • 雷诺数大于7500时,实验发现,采用上边界速度为1的设置会导致无法收敛到正确的流函数分布,因此改用了其他边界速度和边界涡量的设置,不再与文献结果进行比较。

 不同雷诺数汇总比较

        观察第一幅图竖直中线上的水平速度的分布,可见随着Re增大,边界层越来越薄,Re超过3200后边界层变薄的速率就很小了;高Re时,方腔中部的速度分布几乎是线性的;Re>=3200时,在靠近y=1处u的分布会有一个小的凸起,这也与文献中提到的现象一致。水平中线上的竖直速度的分布也是类似的规律。

2. 流线图和涡旋情况(上边界速度采用多项式形式)

参照:文献中的流线图

 

Re=100

图2-1(101*101,dt = 0.002,20000步)
图2-1(左下)
图2-1(右下)​​​​ 注意坐标范围更大

Re=400

图2-2(左下)
图2-2(右下) 注意坐标范围更大
图2-2(101*101,dt = 0.002,20000步)

Re= 1000

图2-3(左下)注意坐标范围更大
图2-3(右下)

图2-3(101*101,dt = 0.002,40000步)

Re=3200

图2-4(左下)
图2-4(右下)
图2-4(左上)

图2-4(101*101,dt = 0.002,90000步)

Re=5000

图2-5(左下)
图2-5(右下)
图2-5(左上)
图2-5(右下,放大观察)
图2-5(101*101,dt = 0.002,600000步)

 Re=7500

图2-6(左下)
图2-6(右下)
图2-6(左上)
图2-6(右下,b)
(201*201,dt=0.001,Thom公式,80000步)
图2-6(101*101,dt = 0.002,440000步)

 Re=10000

图2-7(左下)
图2-7(右下)
图2-7(左上)
图2-7(右下,放大观察)

图2-7(101*101,dt = 0.002,568628步)

 Re=15000

图2-8(101*101,dt = 0.001,500000步)(右下,放大观察)

 分析

  • 方法说明:
    雷诺数在5000及以下时,采用Thom壁涡公式,101*101网格,dt=0.002;
    雷诺数达到7500以上时,如果继续采用原来的方法,发现收敛到错误的结果,如图2-9所示;即使加密网格提高精度(201*201,dt=0.001以保证稳定性),问题依然不变;因此尝试改用Woods壁涡公式,并收敛到了正确的流函数分布。
  • 与文献中图形进行比较,流线图基本相似,计算结果是可信的。
  • Re=100,400,1000时,只在左下和右下两个角落分别出现一个二次涡(旋转方向与主涡相反),大致呈等腰直角三角形,强度随着Re增大而增大,在流线图里的覆盖范围逐渐扩大;Re=3200时,在靠近顶盖的左侧壁面上出现了第3个二次涡;Re=5000时,右下角开始出现三次涡的迹象(见图2-5(右下,放大观察)),Re达到10000后右下角出现明显的三次涡(见图2-7(右下,放大观察))。可以预测当Re增大时会出现更多的三次涡。
  • 随着Re的增大,主涡涡心的位置逐渐由右上方向中心移动,但最终位置不会位于方腔正中心,这是由于二维方腔流动为带奇性流动,方腔内部流动不对称所造成的;二次涡和三次涡的涡心位置由角落逐渐向中间移动。
图2-9(101*101网格,dt=0.002)  无法收敛到正确结果

3. Re=10000时流场随时间的演化情况

 

图2-7(101*101,dt = 0.002,568628步)

4. 主涡涡心位置比较(上边界速度设为1,便于比较)

        标黄的为我们的计算结果,基准数据来源于文献"High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method"。可见主涡涡心位置的计算是比较准确的,起初位于方腔的右上角,随着雷诺数增大而逐渐接近方腔的几何中心。

        (注:雷诺数在7500以上时,改用了Woods壁涡公式,并改用多项式形式的上边界速度条件,比较结果仅供参考)

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值