【小案例:二】OpenCV颜色追踪

该博客介绍了使用OpenCV进行颜色跟踪的方法,通过创建Trackbar调整HSV阈值,实现实时视频中的绿色、红色、蓝色和黄色物体检测。同时展示了如何在Python中进行颜色范围筛选、轮廓检测及中值滤波等操作,用于识别不同颜色的物体。
摘要由CSDN通过智能技术生成

一、函数API

之前几篇文章有讲过,故不做过多介绍:
OpenCV快速入门四:TrackBar控件(滑动条)
OpenCV快速入门五:色彩空间转换

二:代码演示

阈值大小确定:

import cv2
import numpy as np

def mcallback(x):
    pass

cv2.namedWindow("Tracking")
#绿色的HSV:可能不是很准
#l_g = np.array([35, 43, 46]) # 下限
#u_g = np.array([77,255,255]) # 上限
cv2.createTrackbar("LH", "Tracking", 0, 255, mcallback)
cv2.createTrackbar("LS", "Tracking", 0, 255, mcallback)
cv2.createTrackbar("LV", "Tracking", 147, 255, mcallback)
cv2.createTrackbar("UH", "Tracking", 100, 255, mcallback)
cv2.createTrackbar("US", "Tracking", 45, 255, mcallback)
cv2.createTrackbar("UV", "Tracking", 255, 255, mcallback)


cap = cv2.VideoCapture(0)
while True:
    ret, frame = cap.read()
    # img = cv2.imread(r"C:\Users\DMr\Pictures\text\book.jpg")
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

    l_h = cv2.getTrackbarPos("LH", "Tracking")
    l_s = cv2.getTrackbarPos("LS", "Tracking")
    l_v = cv2.getTrackbarPos("LV", "Tracking")

    u_h = cv2.getTrackbarPos("UH", "Tracking")
    u_s = cv2.getTrackbarPos("US", "Tracking")
    u_v = cv2.getTrackbarPos("UV", "Tracking")

    l_g = np.array([l_h, l_s, l_v])  
    u_g = np.array([u_h, u_s, u_v])

    mask = cv2.inRange(hsv, l_g, u_g)

    res = cv2.bitwise_and(frame, frame, mask=mask)  

    cv2.imshow("img", frame)
    cv2.imshow("mask", mask)
    cv2.imshow("res", res)
    key = cv2.waitKey(10)
    if(key & 0xff == ord('q')):
        break

cv2.destroyAllWindows()


颜色跟踪:

import numpy as np
import cv2

font = cv2.FONT_HERSHEY_SIMPLEX

lower_green = np.array([40, 56, 108])  # 绿色低阈值
upper_green = np.array([85, 156, 235])  # 绿色高阈值
lower_red = np.array([7, 132, 154])  # ju色低阈值
upper_red = np.array([17, 226, 245])  # ju色高阈值
lower_blue = np.array([85, 68, 71])  # 蓝色低阈值
upper_blue = np.array([141, 186, 255])  # 蓝色高阈值
lower_yellow = np.array([12, 59, 168])  # 黄色低阈值
upper_yellow = np.array([35, 141, 255])  # 黄色高阈值
lower_white = np.array([75, 0, 158])  # bai色低阈值
upper_white = np.array([118, 64, 247])  # 白色高阈值

cap = cv2.VideoCapture(0)  # 打开USB摄像头
if (cap.isOpened()):  # 视频打开成功
    flag = 1
else:
    flag = 0
num = 0
if (flag):
    while (True):
        ret, frame = cap.read()
        if ret == False:
            break

        hsv_img = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
        mask_green = cv2.inRange(hsv_img, lower_green, upper_green)  # 根据颜色范围删选
        mask_red = cv2.inRange(hsv_img, lower_red, upper_red)
        mask_blue = cv2.inRange(hsv_img, lower_blue, upper_blue)
        mask_yellow = cv2.inRange(hsv_img, lower_yellow, upper_yellow)
        mask_white = cv2.inRange(hsv_img, lower_white, upper_white)

        mask_green = cv2.medianBlur(mask_green, 7)  # 中值滤波
        mask_red = cv2.medianBlur(mask_red, 7)
        mask_blue = cv2.medianBlur(mask_blue, 7)
        mask_yellow = cv2.medianBlur(mask_yellow, 7)
        mask_white = cv2.medianBlur(mask_white, 7)

        mask = cv2.bitwise_or(mask_green, mask_red, mask_blue, mask_yellow)  # 检测轮廓
        mask_green, contours, hierarchy = cv2.findContours(mask_green, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
        contours = sorted(contours, key=cv2.contourArea, reverse=True)[:2] # 取面积最大的2个
        mask_red, contours2, hierarchy2 = cv2.findContours(mask_red, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
        contours2= sorted(contours2, key=cv2.contourArea, reverse=True)[:1]
        mask_blue, contours3, hierarchy3 = cv2.findContours(mask_blue, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
        contours3 = sorted(contours3, key=cv2.contourArea, reverse=True)[:2]
        mask_yellow, contours4, hierarchy4 = cv2.findContours(mask_yellow, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
        #contours4 = sorted(contours4, key=cv2.contourArea, reverse=True)[:1]
        mask_white, contours5, hierarchy5 = cv2.findContours(mask_white, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
        contours5 = sorted(contours5, key=cv2.contourArea, reverse=True)[:1]

        for cnt in contours:
            (x, y, w, h) = cv2.boundingRect(cnt)
            cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
            cv2.putText(frame, "Green", (x, y - 5), font, 0.7, (0, 255, 0), 2)

        for cnt2 in contours2:
            (x2, y2, w2, h2) = cv2.boundingRect(cnt2)
            cv2.rectangle(frame, (x2, y2), (x2 + w2, y2 + h2), (0, 115, 255), 2)
            cv2.putText(frame, "Orange", (x2, y2 - 5), font, 0.7, (0, 115, 255), 2)

        for cnt3 in contours3:
            (x3, y3, w3, h3) = cv2.boundingRect(cnt3)
            cv2.rectangle(frame, (x3, y3), (x3 + w3, y3 + h3), (255, 0, 0), 2)
            cv2.putText(frame, "Blue", (x3, y3 - 5), font, 0.7, (255, 0, 0), 2)

        for cnt4 in contours4:
            (x4, y4, w4, h4) = cv2.boundingRect(cnt4)
            cv2.rectangle(frame, (x4, y4), (x4 + w4, y4 + h4), (0, 255, 255), 2)
            cv2.putText(frame, "Yellow", (x4, y4 - 5), font, 0.7, (0, 255, 255), 2)

        for cnt5 in contours5:
            (x5, y5, w5, h5) = cv2.boundingRect(cnt5)
            cv2.rectangle(frame, (x5, y5), (x5 + w5, y5 + h5), (255, 255, 255), 2)
            cv2.putText(frame, "White", (x5, y5 - 5), font, 0.7, (255, 255, 255), 2)


        cv2.imshow("color_det", frame)

        if cv2.waitKey(20) & 0xFF == ord("q"):
            break
cv2.waitKey(0)
cv2.destroyAllWindows()

效果如下
颜色检测

每日“大饼”
只要你想赢 就没人能让你输

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

氿 柒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值