NNDL 实验六 卷积神经网络(2)基础算子

目录

5.2 卷积神经网络的基础算子

 5.2.1 卷积算子

 5.2.1.1 多通道卷积

 5.2.1.2 多通道卷积层算子

5.2.1.3 卷积算子的参数量和计算量

 5.2.2 汇聚层算子

 选做题:使用pytorch实现Convolution Demo

总结 

参考 


使用pytorch实现

5.2 卷积神经网络的基础算子

卷积神经网络是目前计算机视觉中使用最普遍的模型结构,如图5.8 所示,由M个卷积层和b个汇聚层组合作用在输入图片上,在网络的最后通常会加入K个全连接层。

 从上图可以看出,卷积网络是由多个基础的算子组合而成。下面我们先实现卷积网络的两个基础算子:卷积层算子和汇聚层算子。 

 5.2.1 卷积算子

 卷积层是指用卷积操作来实现神经网络中一层。为了提取不同种类的特征,通常会使用多个卷积核一起进行特征提取。

 5.2.1.1 多通道卷积

 在前面介绍的二维卷积运算中,卷积的输入数据是二维矩阵。但实际应用中,一幅大小为M×N的图片中的每个像素的特征表示不仅仅只有灰度值的标量,通常有多个特征,可以表示为D维的向量,比如RGB三个通道的特征向量。因此,图像上的卷积操作的输入数据通常是一个三维张量,分别对应了图片的高度M、宽度N和深度D,其中深度D通常也被称为输入通道数D。如果输入如果是灰度图像,则输入通道数为1;如果输入是彩色图像,分别有R、G、B三个通道,则输入通道数为3。

此外,由于具有单个核的卷积每次只能提取一种类型的特征,即输出一张大小为U×V的特征图(Feature Map)。而在实际应用中,我们也希望每一个卷积层能够提取多种不同类型的特征,所以一个卷积层通常会组合多个不同的卷积核来提取特征,经过卷积运算后会输出多张特征图,不同的特征图对应不同类型的特征。输出特征图的个数通常将其称为输出通道数P。

说明:

《神经网络与深度学习》将Feature Map翻译为“特征映射”,这里翻译为“特征图”。

假设一个卷积层的输入特征图X\in R^{D*M*N},其中(M,N)为特征图的尺寸,D代表通道数;卷积核为W\in R^{P*D*U*V},其中(U,V)为卷积核的尺寸,D代表输入通道数,P代表输出通道数。

说明:

在实践中,根据目前深度学习框架中张量的组织和运算性质,这里特征图的大小为D×M×N,和《神经网络与深度学习》中M×N×D的定义并不一致。

相应地,卷积核W的大小为R^{P*D*U*V}

一张输出特征图的计算

对于D个输入通道,分别对每个通道的特征图X^{d}设计一个二维卷积核W^{p,d},并与对应的输入特征图X^{d}进行卷积运算,再将得到的D个结果进行加和,得到一张输出特征图Z^{p}。计算方式如下:

Z^{p}=\sum_{d=1}^{D}W^{p,d}\otimes X^{d}+b^{p}

Y^{p}=f(Z^{p})

其中p表示输出特征图的索引编号,W^{p,d}\in \mathbb{R} ^{U\times V}为二维卷积核,b^{p}为标量偏置,f(\cdot )为非线性激活函数,一般用ReLU函数。 

 

 多张输出特征图的计算

对于大小为D×M×N的输入特征图,每一个输出特征图都需要一组大小为W\in \mathbb{R} ^{D\times U\times V}的卷积核进行卷积运算。使用P组卷积核分布进行卷积运算,得到P个输出特征图Y^{1},Y^{2},...,Y^{P}。然后将P个输出特征图进行拼接,获得大小为P×M′×N′的多通道输出特征图。上面计算方式的可视化如下图所示。

 

 5.2.1.2 多通道卷积层算子

根据上面的公式,多通道卷积卷积层的代码实现如下:

import torch
import torch.nn as nn
 
 
class Conv2D(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
        super(Conv2D, self).__init__()
        # 创建卷积核
        weight_attr = torch.randn([out_channels, in_channels, kernel_size, kernel_size])
        weight_attr = torch.nn.init.constant_(torch.as_tensor(weight_attr, dtype=torch.float32), val=1.0)
        self.weight = torch.nn.Parameter(weight_attr)
        # 创建偏置
        bias_attr = torch.zeros([out_channels, 1])
        bias_attr = torch.as_tensor(bias_attr, dtype=torch.float32)
        self.bias = torch.nn.Parameter(bias_attr)
        self.stride = stride
        self.padding = padding
        # 输入通道数
        self.in_channels = in_channels
        # 输出通道数
        self.out_channels = out_channels
 
    # 基础卷积运算
    def single_forward(self, X, weight):
        # 零填充
        new_X = torch.zeros([X.shape[0], X.shape[1]+2*self.padding, X.shape[2]+2*self.padding])
        new_X[:, self.padding:X.shape[1]+self.padding, self.padding:X.shape[2]+self.padding] = X
        u, v = weight.shape
        output_w = (new_X.shape[1] - u) // self.stride + 1
        output_h = (new_X.shape[2] - v) // self.stride + 1
        output = torch.zeros([X.shape[0], output_w, output_h])
        for i in range(0, output.shape[1]):
            for j in range(0, output.shape[2]):
                output[:, i, j] = torch.sum(new_X[:, self.stride*i:self.stride*i+u, self.stride*j:self.stride*j+v]*weight, dim=[1, 2])
        return output
 
    def forward(self, inputs):
        feature_maps = []
        # 进行多次多输入通道卷积运算
        p=0
        for w, b in zip(self.weight, self.bias): # P个(w,b),每次计算一个特征图Zp
            multi_outs = []
            # 循环计算每个输入特征图对应的卷积结果
            for i in range(self.in_channels):
                single = self.single_forward(inputs[:, i, :, :], w[i])
                multi_outs.append(single)
                # print("Conv2D in_channels:",self.in_channels,"i:",i,"single:",single.shape)
            # 将所有卷积结果相加
            feature_map = torch.sum(torch.stack(multi_outs), dim=0) + b
            feature_maps.append(feature_map)
            # print("Conv2D out_channels:",self.out_channels, "p:",p,"feature_map:",feature_map.shape)
            p += 1
        # 将所有Zp进行堆叠
        out = torch.stack(feature_maps, 1)
        return out
 
 
inputs = torch.tensor([[[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],
               [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]]])
conv2d = Conv2D(in_channels=2, out_channels=3, kernel_size=2)
print("inputs shape:", inputs.shape)
outputs = conv2d(inputs)
print("Conv2D outputs shape:", outputs.shape)
 
# 比较与torch API运算结果
weight_attr = torch.ones([3, 2, 2, 2])
bias_attr = torch.zeros([3, 1])
bias_attr = torch.as_tensor(bias_attr, dtype=torch.float32)
conv2d_torch = nn.Conv2d(in_channels=2, out_channels=3, kernel_size=(2, 2), bias=True)
conv2d_torch.weight = torch.nn.Parameter(weight_attr)
outputs_torch = conv2d_torch(inputs)
# 自定义算子运算结果
print('Conv2D outputs:\n', outputs)
# torch API运算结果
print('nn.Conv2D outputs:\n', outputs_torch)

运行结果

 

5.2.1.3 卷积算子的参数量和计算量

参数量

对于大小为D×M×N的输入特征图,使用P组大小为W\in \mathbb{R} ^{D\times U\times V}的卷积核进行卷积运算,参数量计算方式为:

 parameters=P\times D\times U\times V+P

 其中,最后的P代表偏置个数。例如:输入特征图大小为3×32×32,使用66组大小为3×3×3的卷积核进行卷积运算,参数量为:

parameters=6\times 3\times 3\times 3+6=168

计算量

 对于大小为D×M×N的输入特征图,使用PP组大小为W\in \mathbb{R} ^{D\times U\times V}的卷积核进行卷积运算,计算量计算方式为:

 FLOPs={M}'\times {N}'\times P \times D \times U\times V + {M}'\times {N}'\times P

 其中M′×N′×P代表加偏置的计算量,即输出特征图上每个点都要与P组卷积核W\in \mathbb{R} ^{D\times U\times V}进行U×V×D次乘法运算后再加上偏置。比如对于输入特征图大小为3×32×32,使用6组大小为3×3×3的卷积核进行卷积运算,计算量为:

 FLOPs=M′×N′×P×D×U×V+M′×N′×P=30×30×3×3×6×3+30×30×6=151200

 5.2.2 汇聚层算子

汇聚层的作用是进行特征选择,降低特征数量,从而减少参数数量。由于汇聚之后特征图会变得更小,如果后面连接的是全连接层,可以有效地减小神经元的个数,节省存储空间并提高计算效率。

常用的汇聚方法有两种,分别是:平均汇聚最大汇聚

  • 平均汇聚:将输入特征图划分为2×2大小的区域,对每个区域内的神经元活性值取平均值作为这个区域的表示;
  • 最大汇聚:使用输入特征图的每个子区域内所有神经元的最大活性值作为这个区域的表示。

 

 汇聚层输出的计算尺寸与卷积层一致,对于一个输入矩阵\small X\in \mathbb{R} ^{M\times N}和一个运算区域大小为U×V的汇聚层,步长为S,对输入矩阵进行零填充,那么最终输出矩阵大小则为

 \small {M}'=\frac{M+2P-U}{S}+1

 \small {N}'=\frac{N+2P-V}{S}+1

 由于过大的采样区域会急剧减少神经元的数量,也会造成过多的信息丢失。目前,在卷积神经网络中比较典型的汇聚层是将每个输入特征图划分为2×2大小的不重叠区域,然后使用最大汇聚的方式进行下采样

由于汇聚是使用某一位置的相邻输出的总体统计特征代替网络在该位置的输出,所以其好处是当输入数据做出少量平移时,经过汇聚运算后的大多数输出还能保持不变。比如:当识别一张图像是否是人脸时,我们需要知道人脸左边有一只眼睛,右边也有一只眼睛,而不需要知道眼睛的精确位置,这时候通过汇聚某一片区域的像素点来得到总体统计特征会显得很有用。这也就体现了汇聚层的平移不变特性。
汇聚层的参数量和计算量

由于汇聚层中没有参数,所以参数量为0;最大汇聚中,没有乘加运算,所以计算量为0,而平均汇聚中,输出特征图上每个点都对应了一次求平均运算。

使用pytorch实现一个简单的汇聚层,代码实现如下:

class Pool2D(nn.Module):
    def __init__(self, size=(2, 2), mode='max', stride=1):
        super(Pool2D, self).__init__()
        # 汇聚方式
        self.mode = mode
        self.h, self.w = size
        self.stride = stride
 
    def forward(self, x):
        output_w = (x.shape[2] - self.w) // self.stride + 1
        output_h = (x.shape[3] - self.h) // self.stride + 1
        output = torch.zeros([x.shape[0], x.shape[1], output_w, output_h])
        # 汇聚
        for i in range(output.shape[2]):
            for j in range(output.shape[3]):
                # 最大汇聚
                if self.mode == 'max':
                    value_m = max(torch.max(x[:, :, self.stride * i:self.stride * i + self.w, self.stride * j:self.stride * j + self.h], dim=3).values[0][0])
                    output[:, :, i, j] = torch.as_tensor(value_m)
                # 平均汇聚
                elif self.mode == 'avg':
                    value_m = max(torch.mean(x[:, :, self.stride * i:self.stride * i + self.w, self.stride * j:self.stride * j + self.h], dim=3)[0][0])
                    output[:, :, i, j] = torch.as_tensor(value_m)
 
        return output
 
 
# 实现一个简单汇聚层
inputs = torch.tensor([[[[1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.], [13., 14., 15., 16.]]]])
pool2d = Pool2D(stride=2)
outputs = pool2d(inputs)
print("input: {}, \noutput: {}".format(inputs.shape, outputs.shape))
# 自定义算子上述代码已经实现,下面比较Maxpool2D与torch API运算结果
maxpool2d_torch = nn.MaxPool2d(kernel_size=(2, 2), stride=2)
outputs_torch = maxpool2d_torch(inputs)
# 自定义算子运算结果
print('Maxpool2D outputs:\n', outputs)
# torch API运算结果
print('nn.Maxpool2D outputs:\n', outputs_torch)
 
# 比较Avgpool2D与torch API运算结果
avgpool2d_torch = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
outputs_torch = avgpool2d_torch(inputs)
pool2d = Pool2D(mode='avg', stride=2)
outputs = pool2d(inputs)
# 自定义算子运算结果
print('Avgpool2D outputs:\n', outputs)
# torch API运算结果
print('nn.Avgpool2D outputs:\n', outputs_torch)

运行结果

 

 

  • 由于汇聚层中没有参数,所以参数量为0;
  • 最大汇聚中,没有乘加运算,所以计算量为0,
  • 平均汇聚中,输出特征图上每个点都对应了一次求平均运算。

 选做题:使用pytorch实现Convolution Demo

1. 翻译以下内容

 翻译:

卷积演示。下面是一个 CONV 层的运行演示。由于 3D 图像难以可视化,因此所有体积(输入图像(蓝色)、权重图像(红色)、输出图像(绿色))都在每个深度层堆叠成行后被可视化。输入体积的大小为 W1=5,H1=5,D1=3,CONV 层参数为 K=2,F=3,S=2,P=1。也就是说,我们有两个大小为 3×3 的过滤器,它们以 2为步幅被应用。因此,输出图像的空间大小 为(5 - 3 + 2)/2 + 1 = 3。此外,要注意P=1 的填充应用于输入图像,使输入图像的外部边界为零。下面的可视化效果循环访问输出激活(绿色),并显示出每个元素的计算方法为将突出显示的输入(蓝色)与卷积核(红色)相乘,再将其相加,然后通过偏差抵消结果。

2. 代码实现下图

 代码实现

import torch
import torch.nn as nn


class Conv2D(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, weight_attr=[], bias_attr=[]):
        super(Conv2D, self).__init__()
        self.weight = torch.nn.Parameter(weight_attr)
        self.bias = torch.nn.Parameter(bias_attr)
        self.stride = stride
        self.padding = padding
        # 输入通道数
        self.in_channels = in_channels
        # 输出通道数
        self.out_channels = out_channels

    # 基础卷积运算
    def single_forward(self, X, weight):
        # 零填充
        new_X = torch.zeros([X.shape[0], X.shape[1] + 2 * self.padding, X.shape[2] + 2 * self.padding])
        new_X[:, self.padding:X.shape[1] + self.padding, self.padding:X.shape[2] + self.padding] = X
        u, v = weight.shape
        output_w = (new_X.shape[1] - u) // self.stride + 1
        output_h = (new_X.shape[2] - v) // self.stride + 1
        output = torch.zeros([X.shape[0], output_w, output_h])
        for i in range(0, output.shape[1]):
            for j in range(0, output.shape[2]):
                output[:, i, j] = torch.sum(
                    new_X[:, self.stride * i:self.stride * i + u, self.stride * j:self.stride * j + v] * weight,
                    dim=[1, 2])
        return output

    def forward(self, inputs):
        feature_maps = []
        # 进行多次多输入通道卷积运算
        p = 0
        for w, b in zip(self.weight, self.bias):  # P个(w,b),每次计算一个特征图Zp
            multi_outs = []
            # 循环计算每个输入特征图对应的卷积结果
            for i in range(self.in_channels):
                single = self.single_forward(inputs[:, i, :, :], w[i])
                multi_outs.append(single)
                # print("Conv2D in_channels:",self.in_channels,"i:",i,"single:",single.shape)
            # 将所有卷积结果相加
            feature_map = torch.sum(torch.stack(multi_outs), dim=0) + b  # Zp
            feature_maps.append(feature_map)
            # print("Conv2D out_channels:",self.out_channels, "p:",p,"feature_map:",feature_map.shape)
            p += 1
        # 将所有Zp进行堆叠
        out = torch.stack(feature_maps, 1)
        return out


# 创建第一层卷积核
weight_attr1 = torch.tensor(
    [[[-1, 1, 0], [0, 1, 0], [0, 1, 1]], [[-1, -1, 0], [0, 0, 0], [0, -1, 0]], [[0, 0, -1], [0, 1, 0], [1, -1, -1]]],
    dtype=torch.float32)
weight_attr1 = weight_attr1.reshape([1, 3, 3, 3])
bias_attr1 = torch.as_tensor(torch.ones([3, 1]))

Input_Volume = torch.tensor([[[0, 1, 1, 0, 2], [2, 2, 2, 2, 1], [1, 0, 0, 2, 0], [0, 1, 1, 0, 0], [1, 2, 0, 0, 2]]
                                , [[1, 0, 2, 2, 0], [0, 0, 0, 2, 0], [1, 2, 1, 2, 1], [1, 0, 0, 0, 0], [1, 2, 1, 1, 1]],
                             [[2, 1, 2, 0, 0], [1, 0, 0, 1, 0], [0, 2, 1, 0, 1], [0, 1, 2, 2, 2], [2, 1, 0, 0, 1]]])
Input_Volume = Input_Volume.reshape([1, 3, 5, 5])
conv2d_1 = Conv2D(in_channels=3, out_channels=3, kernel_size=3, stride=2, padding=1, weight_attr=weight_attr1,
                  bias_attr=bias_attr1)
output1 = conv2d_1(Input_Volume)

# 创建第二层卷积核
weight_attr2 = torch.tensor(
    [[[1, 1, -1], [-1, -1, 1], [0, -1, 1]], [[0, 1, 0], [-1, 0, -1], [-1, 1, 0]], [[-1, 0, 0], [-1, 0, 1], [-1, 0, 0]]],
    dtype=torch.float32)
weight_attr2 = weight_attr2.reshape([1, 3, 3, 3])
bias_attr2 = torch.as_tensor(torch.zeros([3, 1]))

Input_Volume = torch.tensor([[[0, 1, 1, 0, 2], [2, 2, 2, 2, 1], [1, 0, 0, 2, 0], [0, 1, 1, 0, 0], [1, 2, 0, 0, 2]]
                                , [[1, 0, 2, 2, 0], [0, 0, 0, 2, 0], [1, 2, 1, 2, 1], [1, 0, 0, 0, 0], [1, 2, 1, 1, 1]],
                             [[2, 1, 2, 0, 0], [1, 0, 0, 1, 0], [0, 2, 1, 0, 1], [0, 1, 2, 2, 2], [2, 1, 0, 0, 1]]])
Input_Volume = Input_Volume.reshape([1, 3, 5, 5])
conv2d_2 = Conv2D(in_channels=3, out_channels=2, kernel_size=3, stride=2, padding=1, weight_attr=weight_attr2,
                  bias_attr=bias_attr2)
output2 = conv2d_2(Input_Volume)
print( output1)
print( output2)

运行结果


 

总结 

这次实验的内容比之前的少了一些,主要是实现卷积网络的两个基础算子,让我对这些算子更加熟悉了解,自己亲身体会了多通道卷积和汇聚,这次实验还是很有意义的。

参考 

NNDL 实验5(上) - HBU_DAVID - 博客园 (cnblogs.com)

NNDL 实验六 卷积神经网络(2)基础算子

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值