1. 实验目的
对比主流nlp框架的功能,并对其实际效果进行测评,以便后续使用。
2. 功能矩阵对比
3. 性能测试
(1)分词
数据集选用sighan2005 PKU语料库测试集中的1930个样本。
结论: 整体效果上看,若对精度要求高,对时间要求低,可以采用foolnltk;若对时间有一定的要求,则考虑jieba,jiagu和spacy。
(2)命名实体识别
整体效果上,foolnltk > spacy > paddlenlp> huggingface > LAC > hanlp ≈ corenlp > jiagu > nltk
(3)抽取式文本摘要
数据集选用教育培训行业的中文语料,共192876条,随机选取1928条用于评测;评测标准选Rouge-1和Rouge-L。
整体效果:textRank > huggingface & hanlp
(4)语义相似度
数据集选用微众银行客户问句匹配数据的训练集,含有120000个句子对,取前1000个进行评测,选取阈值为0.5
整体上看,huggingface效果最好。
(5)依存句法分析
数据集选用第二届自然语言处理与中文计算会议(NLP&CC 2013)中清华大学语义依存网络语料的验证集(已分词),共计2000个句子。
备注:
- Hanlp和spacy无法直接对分词后的文本进行依存分析,因此只评测分词结果和数据集相同的样本的准确率
- 注:nltk是调用的stanford corenlp的模型包
- Spacy标签的含义对应表:https://github.com/clir/clearnlp-guidelines/blob/master/md/specifications/dependency_labels.md
整体上看,spacy效果最好。