[基本功]假设检验概念&统计量一览

一、基础概念

第Ⅰ类错误:弃真错误,原假设是真的,但却被我们拒绝了, α \alpha α

第Ⅱ类错误:取伪错误,原假设是假的,但却被我们接受了, β \beta β

显著性水平:当原假设正确时,检验统计量落在拒绝域的概率,也就是犯弃真错误的概率,事先确定好,一般取0.01,0.05,0.1等

双侧检验:原假设形式为“≠”

单侧检验:备择假设为“<”称为左侧检验,备择假设为“>”称为右侧检验

拒绝域:
在这里插入图片描述

大样本:样本量>=30

小样本:样本量<30

二、一个总体参数的假设检验

1. 大样本均值检验

  • 大样本情况下,样本均值的抽样分布近似服从正态。

检验统计量:
σ 已 知 : z = x − μ 0 σ / n σ 未 知 : z = x − μ 0 s / n \sigma已知:z=\frac{x-\mu_0}{\sigma/\sqrt n} \\\sigma未知:z=\frac{x-\mu_0}{s/\sqrt n} σz=σ/n xμ0σz=s/n xμ0
拒绝域:
双 侧 检 验 : ∣ z ∣ > z α / 2 左 侧 检 验 : z < − z α 右 侧 检 验 : z > z α 双侧检验:|z|>z_{\alpha/2} \\左侧检验:z<-z_{\alpha} \\右侧检验:z>z_{\alpha} z>zα/2z<zαz>zα

2. 小样本均值检验

  • 假设总体服从正态分布。

检验统计量:
σ 已 知 : z = x ‾ − μ 0 σ / n σ 未 知 : t = x ‾ − μ 0 s / n \sigma已知:z=\frac{\overline x-\mu_0}{\sigma/\sqrt n} \\\sigma未知:t=\frac{\overline x-\mu_0}{s/\sqrt n} σz=σ/n xμ0σt=s/n xμ0
总体方差未知的拒绝域:
双 侧 检 验 : ∣ t ∣ > t α / 2 ( n − 1 ) 左 侧 检 验 : t < − t α ( n − 1 ) 右 侧 检 验 : t > t α ( n − 1 ) 双侧检验:|t|>t_{\alpha/2}(n-1) \\左侧检验:t<-t_{\alpha}(n-1) \\右侧检验:t>t_{\alpha}(n-1) t>tα/2(n1)t<tα(n1)t>tα(n1)

3. 大样本总体比例检验

检验统计量:
z = p − π 0 π 0 ( 1 − π 0 ) n z=\frac{p-\pi_0}{\sqrt{\frac{\pi_0(1-\pi_0)}{n}}} z=nπ0(1π0) pπ0

4. 总体方差检验

  • 无论大样本还是小样本,都要求总体服从正态分布

检验统计量:
χ 2 = ( n − 1 ) s 2 σ 0 2 \chi^2=\frac{(n-1)s^2}{\sigma_0^2} χ2=σ02(n1)s2
拒绝域:
双 侧 检 验 : χ 2 < χ 1 − α / 2 2 或 χ 2 > χ 1 − α / 2 2 左 侧 检 验 : χ 2 < χ 1 − α 2 右 侧 检 验 : χ 2 > χ α 2 双侧检验:\chi^2<\chi^2_{1-\alpha/2}或\chi^2>\chi^2_{1-\alpha/2} \\左侧检验:\chi^2<\chi^2_{1-\alpha} \\右侧检验:\chi^2>\chi^2_{\alpha} χ2<χ1α/22χ2>χ1α/22χ2<χ1α2χ2>χα2

三、两个总体参数的假设检验

1. 独立大样本均值检验

检验统计量:
σ 1 和 σ 2 已 知 : z = ( x ‾ 1 − x ‾ 2 ) − ( μ 1 − μ 2 ) σ 1 2 / n 1 + σ 2 2 / n 2 σ 1 和 σ 2 未 知 : z = ( x ‾ 1 − x ‾ 2 ) − ( μ 1 − μ 2 ) s 1 2 / n 1 + s 2 2 / n 2 \sigma_1和\sigma_2已知: z=\frac{(\overline x_1-\overline x_2)-(\mu_1-\mu_2)}{\sqrt{\sigma_1^2/n_1+\sigma_2^2/n_2}} \\\sigma_1和\sigma_2未知: z=\frac{(\overline x_1-\overline x_2)-(\mu_1-\mu_2)}{\sqrt{s_1^2/n_1+s_2^2/n_2}} σ1σ2z=σ12/n1+σ22/n2 (x1x2)(μ1μ2)σ1σ2z=s12/n1+s22/n2 (x1x2)(μ1μ2)

2. 独立小样本均值检验

  • 假定两个总体都服从正态

σ 1 和 σ 2 已 知 : z = ( x ‾ 1 − x ‾ 2 ) − ( μ 1 − μ 2 ) σ 1 2 / n 1 + σ 2 2 / n 2 σ 1 和 σ 2 未 知 但 相 等 : t = ( x ‾ 1 − x ‾ 2 ) − ( μ 1 − μ 2 ) s p 1 / n 1 + 1 / n 2 ( s p 2 = ( n 1 − 1 ) s 1 2 + ( n 2 − 1 ) s 2 2 n 1 + n 2 − 2 ) σ 1 和 σ 2 未 知 且 不 等 : t = ( x ‾ 1 − x ‾ 2 ) − ( μ 1 − μ 2 ) s 1 2 / n 1 + s 2 2 / n 2 ( v = ( s 1 2 n 1 + s 2 2 n 2 ) 2 ( s 1 2 n 1 ) 2 n 1 − 1 + ( s 2 2 n 2 ) 2 n 2 − 1 ) \sigma_1和\sigma_2已知: z=\frac{(\overline x_1-\overline x_2)-(\mu_1-\mu_2)}{\sqrt{\sigma_1^2/n_1+\sigma_2^2/n_2}} \\\sigma_1和\sigma_2未知但相等:t=\frac{(\overline x_1-\overline x_2)-(\mu_1-\mu_2)}{s_p\sqrt{1/n_1+1/n_2}} \\(s_p^2=\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}) \\\sigma_1和\sigma_2未知且不等:t=\frac{(\overline x_1-\overline x_2)-(\mu_1-\mu_2)}{\sqrt{s_1^2/n_1+s_2^2/n_2}} \\(v=\frac{(\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2})^2}{\frac{(\frac{s_1^2}{n_1})^2}{n_1-1}+\frac{(\frac{s_2^2}{n_2})^2}{n_2-1}}) σ1σ2z=σ12/n1+σ22/n2 (x1x2)(μ1μ2)σ1σ2t=sp1/n1+1/n2 (x1x2)(μ1μ2)(sp2=n1+n22(n11)s12+(n21)s22)σ1σ2t=s12/n1+s22/n2 (x1x2)(μ1μ2)(v=n11(n1s12)2+n21(n2s22)2(n1s12+n2s22)2)

  • σ 1 \sigma_1 σ1 σ 2 \sigma_2 σ2未知但相等时,t服从自由度为 n 1 + n 2 − 2 n_1+n_2-2 n1+n22的t分布
  • σ 1 \sigma_1 σ1 σ 2 \sigma_2 σ2未知且不等时,t服从自由度为 v v v的t分布,v计算后四舍五入取整数

3. 小样本配对样本均值检验

  • 假定两个总体配对差值构成的总体服从正态分布

检验统计量:
t = d ‾ − ( μ 1 − μ 2 ) s d / n t=\frac{\overline d-(\mu_1-\mu_2)}{s_d/\sqrt{n}} t=sd/n d(μ1μ2)

  • d ‾ \overline d d表示配对差值平均数; s d s_d sd表示配对差值标准差
  • 服从 t ( n − 1 ) t(n-1) t(n1)

4. 大样本配对样本均值检验

  • 假定两个总体配对差值构成的总体服从正态分布

检验统计量:
z = d ‾ − ( μ 1 − μ 2 ) s d / n z=\frac{\overline d-(\mu_1-\mu_2)}{s_d/\sqrt{n}} z=sd/n d(μ1μ2)

  • d ‾ \overline d d表示配对差值平均数; s d s_d sd表示配对差值标准差

5. 大样本总体比例之差检验

  • 要求两个样本都是大样本: n 1 p 1 , n 1 ( 1 − p 1 ) , n 2 p 2 , n 2 ( 1 − p 2 ) n_1p_1, n_1(1-p_1),n_2p_2,n_2(1-p_2) n1p1,n1(1p1),n2p2,n2(1p2)都大于等于10

检验统计量:
z = ( p 1 − p 2 ) − ( π 1 − π 2 ) σ p 1 − p 2 ( σ p 1 − p 2 = π 1 ( 1 − π 1 ) n 1 + π 2 ( 1 − π 2 ) n 2 ) z=\frac{(p_1-p_2)-(\pi_1-\pi_2)}{\sigma_{p_1-p_2}} \\(\sigma_{p_1-p_2}=\sqrt{\frac{\pi_1(1-\pi_1)}{n_1}+\frac{\pi_2(1-\pi_2)}{n_2}}) z=σp1p2(p1p2)(π1π2)(σp1p2=n1π1(1π1)+n2π2(1π2) )

  • 由于 π 1 \pi_1 π1 π 2 \pi_2 π2未知,需要由 p 1 p_1 p1 p 2 p_2 p2估计
    检 验 两 总 体 比 例 之 差 是 否 为 0 : p = x 1 + x 2 n 1 + n 2 = p 1 n 1 + p 2 n 2 n 1 + n 2 σ p 1 − p 2 = p ( 1 − p ) n 1 + p ( 1 − p ) n 2 = p ( 1 − p ) ( 1 n 1 + 1 n 2 ) 检 验 两 总 体 比 例 之 差 是 否 为 某 非 零 常 数 : σ p 1 − p 2 = p 1 ( 1 − p 1 ) n 1 + p 2 ( 1 − p 2 ) n 2 检验两总体比例之差是否为0:p=\frac{x_1+x_2}{n_1+n_2}=\frac{p_1n_1+p_2n_2}{n_1+n_2} \\\sigma_{p_1-p_2}=\sqrt{\frac{p(1-p)}{n_1}+\frac{p(1-p)}{n_2}}=\sqrt{p(1-p)(\frac{1}{n_1}+\frac{1}{n_2})} \\检验两总体比例之差是否为某非零常数:\sigma_{p_1-p_2}=\sqrt{\frac{p_1(1-p_1)}{n_1}+\frac{p_2(1-p_2)}{n_2}} 0p=n1+n2x1+x2=n1+n2p1n1+p2n2σp1p2=n1p(1p)+n2p(1p) =p(1p)(n11+n21) σp1p2=n1p1(1p1)+n2p2(1p2)

6. 独立总体方差比检验

  • 两总体独立取自两正态总体
  • 双侧检验时,通常用较大的样本方差除以较小的样本方差,保证拒绝域在F分布的右侧
  • 单侧检验时,也可同样安排为右侧检验

检验统计量:
F = s 1 2 s 2 2 F=\frac{s_1^2}{s_2^2} F=s22s12

  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值