从如何判断对象消亡的角度出发,垃圾收集算法可以划分为“引用计数式垃圾收集”和“追踪式垃圾收集”,这两类也被称为“直接垃圾收集”和“间接垃圾收集”。我们主要介绍追踪式垃圾收集
分代收集理论
虚拟机的垃圾收集器大多数遵循“分代收集”的理论进行设计分代设计建立在两个分代假说之上:
1)弱分代假说:绝大多数对象都是朝生夕灭的。
2)强分代假说:熬过越多次垃圾收集过程的对象就越难以消亡。
这两个假说共同奠定了多款垃圾收集器的一致设计原则:收集器应该将Java堆划分出不同的区域,然后将回收对象依据其年龄(年龄即对象熬过垃圾收集过程的次数)分配到不同的区域之中存储。如果一个区域中大多数对象都是朝生夕灭,难以熬过垃圾收集过程的话,那 么把它们集中放在一起,每次回收时只关注如何保留少量存活而不是去标记那些大量将要被回收的对象,就能以较低代价回收到大量的空间;如果剩下的都是难以消亡的对象,那把它们集中放在一块, 虚拟机便可以使用较低的频率来回收这个区域,这就同时兼顾了垃圾收集的时间开销和内存的空间有 效利用。
Java堆划分出不同区域后,垃圾收集器才能每次只回收其中某一个或某些部分的区域。因而才有了“Minor GC”、“Major GC”、“Full GC”划分,也才能针对不同区域安排和存储对象存亡特征相匹配的垃圾回收算法,从而发展出“标记-复制算法”“标记-清除算 法”“标记-整理算法”等针对性的垃圾收集算法。
将理论带入Java虚拟机,Java堆至少分为新生代和老年代。在新生代中,每次垃圾收集时都发现有大批对象死去,而每次回收后存活的少量对象,将会逐步晋升到老年代中存放。
但假如进行一次仅局限于新生代区域的收集,但新生代对象完全有可能被老年代所引用,为了找出新生代的存活对象,不得不在固定GC Roots外,再额外遍历整个老年代中的所有对象来确保可达性分析结果的正确性。为了解决这个问题,对分代收集理论添加第三条法则:
3)跨代引用假说:跨代引用相当于同代引用来说仅占极少数。
这其实可以根据前两条推理得出:存在互相引用关系的两个对象,是倾向于同时生存或同时消亡的。如果某个新生代对象存在跨代引用,由于老年代对象难以消亡,该引用会使新生代对象在收集时同样得以存活,进而在年龄增长之后晋升到老年代中,这时跨代引用也随机消除了。
依据上述假说,我们也不会再为少量跨代引用去扫描整个老年代,也不必浪费专门的空间记录每一个对象是否存在及存在哪些跨代引用,只需要在新生代建立一个全新的数据结构“记忆集”,这个结构把老年代划分成若干小块,标识出老年代的哪一块内存会存在跨代引用。此后当发生Minor GC时,只有包含了跨代引用的小块内存里的对象才会被加入到GC Roots进行扫描。虽然这种方法需要在对象改变引用关系(如将自己或者某个属性赋值)时维护记录数据的正确性,会增加一些运行时的开销,但比起收集时扫描整个老年代来说仍然是划算的。
1)部分收集(Partial GC):指目标不是完整收集整个Java堆的垃圾收集,其中又分为:
- 新生代收集(Minor GC/Young GC):指目标只是新生代的垃圾收集。
- 老年代收集Major GC/Old GC):指目标只是老年代的垃圾收集。目前只有CMS收集器会有单 独收集老年代的行为。另外请注意“Major GC”这个说法现在有点混淆,在不同资料上常有不同所指, 读者需按上下文区分到底是指老年代的收集还是整堆收集。
- 混合收集(Mixed GC):指目标是收集整个新生代以及部分老年代的垃圾收集。目前只有G1收 集器会有这种行为。
2)整堆收集(Full GC):收集整个Java堆和方法区的垃圾收集。
标记-清除算法
算法分为“标记”和“清除”两个阶段:1)首先标记出所有需要回收的对象,在标记完成后,统一回收掉所有被标记的对象,2)也可以反过来,标记存活的对象,统一回收所有未被标记的对象。标记过程就是对象是否属于垃圾的判定过程。
它的主要缺点有两个:
- 是执行效率不稳定,如果Java堆中包含大量对象,而且其中大部分是需要被回收的,这时必须进行大量标记和清除的动作,导致标记和清除两个过程的执行效率都随对象数量增长而降低;
- 是内存空间的碎片化问题,标记、清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致当以后在程序运行过程中需要分配较大对象时无法找 到足够的连续内存而不得不提前触发另一次垃圾收集动作。
标记-复制算法
它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。
如果内存中多数对象都是存活的,这种算法将会产生大量的内存间复制的开销,但对于多数对象都是可回收的情况,算法需要复制的就是占少数的存活对象,而且每次都是针对整个半区进行内存回收,分配内存时也就不用考虑有空间碎片的复杂情况,只要移动堆顶指针,按顺序分配即可。
好处:这样实现简单,运行高效。
缺陷:这种复制回收算法的代价是将可用内存缩小为了原来的一半,空间浪费未免太多了一点。
Apple式回收具体做法是把新生代分为一块较大的Eden空间和两块较小的Survivor空间,每次分配内存只使用一块Eden和其中一块Survivor。发生垃圾收集时,将Eden和Survivor中仍然存活的对象一次性复制到另一块Survivor空间上,然后直接清理掉Eden和已经用过的Survivor空间。HotSpot虚拟机默认Eden:Survivor大小比为8:1,所以每次新生代中可用内存空间为整个新生代容量的90%(Eden的80%和Survivor的10%),只有一个Survivor空间会被浪费。任何人都没有办法百分百保证每次回收都只有不多于10%的对象存活,所以Apple式回收还有一个充当罕见情况的“逃生门”的安全设计,当Survivor空间不足以容纳一次Minor GC之后存活的对象时,就需要依赖其它内存区域(老年代)进行分配担保。
内存分配担保像银行贷款一样,如果另一快Survivor空间没有足够空间存放上一次新生代收集下来的存活对象,这些对象便将通过分配担保机制直接进入老年代。
标记-整理算法
标记-复制算法在对象存活率较高时就要进行较多的复制操作,效率将会降低。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法。
标记-整理算法是一种移动式回收算法。
如果移动存放对象尤其是在老年代这种每次回收都有大量对象存活区域,移动存活对象并更新所有引用这些对象的地方将会是一种极其负重的操作,且这种对象移动操作必须全程暂停用户应用程序才能进行,这样的停顿叫“Stop The World”。
?但如果跟标记-清除算法那样完全不考虑移动和整理存活对象的话,弥散于堆中的存活对象导致的空间碎片化问题就只能依赖更为复杂的内存分配器和内存访问器来解决。譬如通过“分区空闲分配链表”来解决内存分配问题(计算机硬盘存储大文件就不要求物理连续的磁盘空间,能够在碎片化的硬盘上存储和访问就是通过硬盘分区表实现的)。内存的访问是用户程序最频繁的操作,甚至都没有之一,假如在这个环节上增加了额外的负担,势必会直接影响应用程序的吞吐量。
基于以上两点,是否移动对象都存在弊端,移动则内存回收更复杂,不移动则内存分配会更复杂。从垃圾收集停顿时间来看,不移动对象停顿时间会更短,甚至可以不需要停顿,但是从整个程序的吞吐量来看,移动对象会更划算。
还有一种“和稀泥式”解决方案可以不在内存分配和访问上增加太大额外负担,做法是让虚拟机平时多数时间都采用标记-清除算法,暂时容忍内存碎片的存在,直到内存空间的碎片化程度已经大到影响对象分配时,再采用标记-整理算法收集一次,以获得规整的内存空间。前面提到的基于标记-清除算法的CMS收集器面临空间碎片过多时采用的就是这种处理办法。