Java虚拟机实现这些算法时,必须对算法的执行效率有严格考量,才能保证虚拟机的高效运行。
根节点枚举
我们以可达性分析算法中从GC Roots集合找引⽤链这个操作作为介绍虚拟机⾼效实现的第⼀个例⼦。
所有收集器在根节点枚举这一步骤时都是必须暂停用户线程的,因此毫无疑问根节点 枚举与之前提及的整理内存碎片一样会面临相似的“Stop The World”的困扰。现在可达性分析算法耗时最长的查找引用链的过程已经可以做到与用户线程一起并发,但根节点枚举始终还是必须在一个能保障一致性的快照中才得以进行。(这里“一致性”的意思是整个枚举期间执行子系统 看起来就像被冻结在某个时间点上,不会出现分析过程中,根节点集合的对象引用关系还在不断变化 的情况,若这点不能满足的话,分析结果准确性也就无法保证。这是导致垃圾收集过程必须停顿所有 用户线程的其中一个重要原因)
在HotSpot的解决⽅案⾥,是使⽤⼀组称为OopMap的数据结构来达到这个⽬的。⼀旦类加载动作完成的时候,HotSpot就会把对象内什么偏移量上是什么类型的数据计算出来,在即时编译过程中,也会在特定的位置记录下栈⾥和寄存器⾥哪些位置是引⽤。这样收集器在扫描时就可以直接得知这些信息了,并不需要真正⼀个不漏地从⽅法区等GC Roots开始查找。
安全点
在OopMap的协助下,HotSpot可以快速准确地完成GC Roots枚举,但可能引用关系变化,或者说导致OopMap内容变化的指令非常多,如果为每一条指令都生成对应的OopMap,那将会需要大量的额外存储空间,这样垃圾收集伴随而来的空间成本就会变得无法忍受的高昂。
实际上HotSpot也的确没有为每条指令都生成OopMap,只是在“特定的位置”记录了这些信息,这些位置被称为安全点。安全点也就决定了用户程序执行时并非在代码指令流的任意位置都能够停顿下来开始垃圾收集,而是强制要求必须执行到达安全点后才能够暂停。因此,安全点的选定既不能太少以至于让收集器等待时间过长,也不能太过频繁以至于过 分增大运行时的内存负荷。
安全点位置的选取基本上是以“是否具有让程序长时间执行的特征”为标准 进行选定的。程序不太可能因为指令流长度太长这样的原因而长时间执行,“长时间执行”的最明显特征就是指令序列的复用,例如方法调用、循环跳转、异常跳转 等都属于指令序列复用,所以只有具有这些功能的指令才会产生安全点。
还有一个点就是,如何在垃圾收集发生时让所有线程都跑到最近的安全点,然后停顿下来。这里有两种方案可供选择:抢先式中断和主动式中断。
抢占式中断:抢先式中断不需要线程的执行代码主动去配合,在垃圾收集发生时,系统首先把所有用户线程全部中断,如果发现有用户线程中断的地方不在安全点上,就恢复这条线程执行,让它一会再重新中断,直到跑到安全点上。现在几乎没有虚拟机实现采用抢先式中断来暂停线程响应GC事件。
主动式中断:当垃圾收集需要中断线程的时候,不直接对线程操作,仅仅简单地设置一 个标志位,各个线程执行过程时会不停地主动去轮询这个标志,一旦发现中断标志为真时就自己在最近的安全点上主动中断挂起。轮询标志的地方和安全点是重合的,另外还要加上所有创建对象和其他需要在Java堆上分配内存的地方,这是为了检查是否即将要发生垃圾收集,避免没有足够内存分配新对象。
安全区域
当程序不执行时,也就是没有分配处理器的时间,典型的场景便是用户线程处于Sleep状态或者Blocked状态,这时候线程无法响应虚拟机的中断请求,不能再走到安全的地方去中断挂起自己,虚拟机也显然不可能持续等待线程重新被激活分配处理器时间。对于这种情况,就必须引入安全区域来解决。
安全区域确保代码片段中,引用关系不会发送变化,因此,这个区域中任何地方开始垃圾收集都是安全的,也可以将安全区域看作拉伸的安全点。
当用户线程执行到安全区域里面的代码时,首先会标识自己已经进入了安全区域,那样当这段时间里虚拟机要发起垃圾收集时就不必去管这些已声明自己在安全区域内的线程了。当线程要离开安全区域时,它要检查虚拟机是否已经完成了根节点枚举(或者垃圾收集过程中其他需要暂停用户线程的 阶段),
如果完成了,那线程就当作没事发生过,继续执行;
否则它就必须一直等待,直到收到可以离开安全区域的信号为止。
记忆集和卡表
为解决对象跨代引用所带来的问题,垃圾收集器在新生代中建立了记忆集的数据结构。用以避免把整个老年代加入GC Roots扫描范围。记忆集是一种用于记录从非收集区域指向收集区域的指针集合的抽象数据结构。如果我们不考虑效率和成本的话,最简单的实现可以用非收集区域中所有含跨代引用的对象数组来实现这个数据结构。
在垃圾收集的场景中,收集器只需要通过记忆集判断出某一块非收集区域是否存在有指向了收集区域的指针就可以了,并不需要了解这些跨代指针的全部细节。那设计者在实现记忆集的时候,便可以选择更为粗犷的记录粒度来节省记忆集的存储和维护成本。
1.字长精度:每个记录精确到一个机器字长(就是处理器的寻址位数,如常见的32位或64位,这个精度决定了机器访问物理内存地址的指针长度),该字包含跨代指针。
2.对象精度:每个记录精确到一个对象,该对象里有字段含有跨代指针。
3.卡精度:每个记录精确到一块内存区域,该区域内有对象含有跨代指针。
卡精度所指的就是用一种称为“卡表”的方式去实现记忆集。卡表就是记忆集的一种具体实现,它定义了记忆集的记录精度、与堆内存的映射关系等。关于卡表与记忆集的关系,读者不妨按照Java语言中HashMap与Map的关系来类比理解。卡表最简单的形式可以只是一个字节数组。
字节数组CARD_TABLE的每一个元素都对应着其标识的内存区域中一块特定大小的内存块,这个 内存块被称作“卡页”(Card Page)。一个卡页的内存中通常包含不止一个对象,只要卡页内有一个(或更多)对象的字段存在着跨代指针,那就将对应卡表的数组元素的值标识为1,称为这个元素变脏(Dirty),没有则标识为0。在垃圾收集发生时,只要筛选出卡表中变脏的元素,就能轻易得出哪些卡页内存块中包含跨代指针,把它们加入GC Roots中一并扫描。
写屏障
在HotSpot虚拟机⾥是通过写屏障技术维护卡表状态的。写屏障可以看作在虚拟机层⾯对 “引⽤类型字段赋值”这个动作的AOP切⾯,在引⽤对象赋值时会产⽣⼀个环形通知,供程序执⾏额外的动作,也就是说赋值的前后都在写屏障的覆盖范畴内。在赋值前的部分的写屏障叫作写前屏障,在赋值后的则叫作写后屏障。HotSpot虚拟机的许多收集器中都有使⽤到写屏障,但直⾄G1收集器出现之前,其他收集器都只⽤到了写后屏障。
并发的可达性分析
在根节点枚举中,由于GC Roots相比起整个Java堆中全部的对象毕竟还算是极少数,且在各种优化技巧(如OopMap)的加持下,它带来的停顿已经是非常短暂且相对固定(不随堆容量而增长)的了。可从GC Roots再继续往下遍历对象 图,这一步骤的停顿时间就必定会与Java堆容量直接成正比例关系了:堆越大,存储的对象越多,对象图结构越复杂,要标记更多对象而产生的停顿时间自然就更长。
引入三色标记作为工具来辅助推导,把遍历对象图过程中遇到的对象,按照“是否访问过”这个条件标记成以下三种颜色:
- 白色:表示对象尚未被垃圾收集器访问过。显然在可达性分析刚刚开始的阶段,所有的对象都是白色的,若在分析结束的阶段,仍然是白色的对象,即代表不可达。
- 黑色:表示对象已经被垃圾收集器访问过,且这个对象的所有引用都已经扫描过。黑色的对象代 表已经扫描过,它是安全存活的,如果有其他对象引用指向了黑色对象,无须重新扫描一遍。黑色对象不可能直接(不经过灰色对象)指向某个白色对象。
- 灰色:表示对象已经被垃圾收集器访问过,但这个对象上至少存在一个引用还没有被扫描过。
我们要解决并发扫描时的对象消失问题,只需破坏这两个条件的任意⼀个即可。由此分 别产⽣了两种解决⽅案:增量更新和原始快照。
增量更新要破坏的是第一个条件,当黑色对象插入新的指向白色对象的引用关系时,就将这个新插入的引用记录下来,等并发扫描结束之后,再将这些记录过的引用关系中的黑色对象为根,重新扫描一次。这可以简化理解为,黑色对象一旦新插入了指向白色对象的引用之后,它就变回灰色对象了。
原始快照要破坏的是第二个条件,当灰色对象要删除指向白色对象的引用关系时,就将这个要删除的引用记录下来,在并发扫描结束之后,再将这些记录过的引用关系中的灰色对象为根,重新扫描一次。这也可以简化理解为,无论引用关系删除与否,都会按照刚刚开始扫描那一刻的对象图快照来进行搜索。