[NOIP2003 普及组] 栈
题目背景
栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表。
栈有两种最重要的操作,即 pop(从栈顶弹出一个元素)和 push(将一个元素进栈)。
栈的重要性不言自明,任何一门数据结构的课程都会介绍栈。宁宁同学在复习栈的基本概念时,想到了一个书上没有讲过的问题,而他自己无法给出答案,所以需要你的帮忙。
题目描述
宁宁考虑的是这样一个问题:一个操作数序列, 1 , 2 , … , n 1,2,\ldots ,n 1,2,…,n(图示为 1 到 3 的情况),栈 A 的深度大于 n n n。
现在可以进行两种操作,
- 将一个数,从操作数序列的头端移到栈的头端(对应数据结构栈的 push 操作)
- 将一个数,从栈的头端移到输出序列的尾端(对应数据结构栈的 pop 操作)
使用这两种操作,由一个操作数序列就可以得到一系列的输出序列,下图所示为由 1 2 3
生成序列 2 3 1
的过程。
(原始状态如上图所示)
你的程序将对给定的 n n n,计算并输出由操作数序列 1 , 2 , … , n 1,2,\ldots,n 1,2,…,n 经过操作可能得到的输出序列的总数。
输入格式
输入文件只含一个整数 n n n( 1 ≤ n ≤ 18 1 \leq n \leq 18 1≤n≤18)。
输出格式
输出文件只有一行,即可能输出序列的总数目。
样例 #1
样例输入 #1
3
样例输出 #1
5
提示
【题目来源】
NOIP 2003 普及组第三题
方法一:
定义一个二维数组 a[ i ][ j ],i表示总进栈数,j表示总出栈数;
那么,对于a[ i ][ j ],它的上一步操作是入栈或者出栈,若入栈(即上一步是a[ i-1 ][ j ]),若出栈(即上一步是a[ i ][ j-1 ])
即a[ i ][ j ] = a[ i-1 ][ j ] + a[ i ][ j-1 ]
和递归同理,我们需要特别判断一下i和j相等的情况,此时栈内为空,上一步操作只能是出栈
(即a[ i ][ j-1 ])
考虑一下边界,当队列中元素为空时,这个时候,只剩栈中的元素,只能一个一个出栈,只有这一种方法。
#include <cstdio>
#include <iostream>
using namespace std;
int n;
int a[20][20];
int main()
{
cin >> n;
for (int i = 0; i <= n; i++)
{
a[i][0] = 1;//边界
}
for (int i = 1; i <= n; i++) //i表示总进栈数,j表示总出栈数
{
for (int j = 1; j <= i; j++) //注意j的范围
{
if (i == j) a[i][j] = a[i][j - 1];//此时栈内为空,上一步操作一定是出栈
else a[i][j] = a[i][j - 1] + a[i - 1][j];//上一步是入栈或者出栈
}
}
int ans = a[n][n];//入栈数和出栈数都是n
cout << ans;
return 0;
}
方法二:
#include<iostream>
using namespace std;
long n,f[20][20];//f数组记录方案
long dfs(int x,int y)//x是操作队列里元素的个数,y是栈里的个数
{
if(f[x][y]!=0) return f[x][y];//记忆化,走过的方案直接调用
if(x==0) return 1;//当操作队列里没有了,就只有一种方案了
if(y>0) f[x][y]+=dfs(x,y-1);//栈里不为空的时候才可以把栈里的元素推出
f[x][y]+=dfs(x-1,y+1);//操作队列里元素减一,栈里元素加一
return f[x][y];//返回方案值
}
int main()
{
cin >> n;
cout << dfs(n,0) <<endl;
return 0;
}
方法三
因为栈里的数字只有两种选择,出去和不出去。
如果出去栈里的数字个数-1;如果不出去就要压栈,未进站的数字进来一个,未进栈的个数-1,栈内个数+1,所以f[ i ][ j ]=f[ i-1 ][ j ]+f[ i+1 ][ j-1 ]
当栈内没有数字时,只能进栈,且此操作后的出栈情况就要取决于f[ i+1 ][ j-1 ]
(f[ i ][ j ],i表示栈内数字的个数,j表示未进栈数字的个数,f计当前状态下有几种情况)
这样来看的话,边界也就很清楚了(当栈外没有数字时,只能出栈)
f[ i ][ 0 ]=1(0<=j<=n)
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int f[20][20];
int n;
int main()
{
memset(f,0,sizeof(f));
scanf("%d",&n);
for(int i=0; i<=n; i++)
f[i][0]=1;//边界一定要有
for(int j=1; j<=n; j++)
for(int i=0; i<=n; i++)//我们要推f[0][n],所以i要从零开始跑
{
if(i>=1)
f[i][j]=f[i-1][j]+f[i+1][j-1];
if(i==0)//栈内没有东西
f[i][j]=f[i+1][j-1];
}
printf("%d",f[0][n]);
return 0;
}