概率论-第三章

多维随机变量及其分布

在这里插入图片描述

3.1 二维随机变量

定义

一般,设 E 是一个随机试验,他的样本空间 S = {e} ,设 X = X(e) and Y = Y(e) 是定义在 S 上的随机变量,由它们构成的一个向量 (X,Y) 叫做 二位随机向量二位随机变量

分布函数

定义

(X,Y) 是二维随机变量,对于任意实数 x,y 有二元函数:
F ( x , y ) = P { ( X ≤ x ) ∩ ( Y ≤ y ) } = P { X ≤ x , Y ≤ y } F(x,y) = P \lbrace (X \leq x) \cap (Y \leq y) \rbrace = P \lbrace X\leq x,Y \leq y \rbrace F(x,y)=P{(Xx)(Yy)}=P{Xx,Yy}
称为二维随机变量的 分布函数 ,或称为随机变量 X 和 Y 的 联合发布函数

分布函数的基本性质

  1. F(x,y) 为 x,y 的不减函数,即一个变量固定时另一个变量自增,则F(x,y) 也自增。

  2. 0 ≤ F ( x , y ) ≤ 1 0 \leq F(x,y) \leq 1 0F(x,y)1

    对于任意固定的变量
    F ( − ∞ , y ) = 0 F ( x , − ∞ ) = 0 F ( − ∞ , − ∞ ) = 0 F ( ∞ , ∞ ) = 1 F(-\infty,y) = 0 \quad F(x,-\infty) = 0\\ F(-\infty,-\infty) = 0 \quad F(\infty,\infty) = 1 F(,y)=0F(x,)=0F(,)=0F(,)=1

  3. 函数在两个维度上都连续

  4. 对于任意的 (x1,y1),(x2,y2),x1 < x2, y1 < y2 有下列不等式成立
    F ( x 2 , y 2 ) − F ( x 2 , y 1 ) + F ( x 1 , y 1 ) − F ( x 1 , y 2 ) ≥ 0 F(x_2,y_2) - F(x_2,y_1) + F(x_1,y_1) - F(x_1,y_2) \geq 0 F(x2,y2)F(x2,y1)+F(x1,y1)F(x1,y2)0

离散型

定义

如果二维随机变量 (X,Y) 全部可能取值是有限对或可列无限多对,则称 (X,Y)二维离散型随机变量

分布律

我们称下列式子为二维随机变量的 分布律,或称为 X 和 Y 的 联合分布律
P { X = x i , Y = y i } = p i j , i , j = 1 , 2 , ⋅ ⋅ ⋅ ⋅ P \lbrace X = x_i, Y = y_i \rbrace = p_{ij}, \quad i,j = 1,2,···· P{X=xi,Y=yi}=pij,i,j=12
分布函数
F ( x , y ) = ∑ x i ≤ x ∑ y i ≤ y p i j F(x,y) = \sum_{x_i \leq x} \sum_{y_i \leq y}p_{ij} F(x,y)=xixyiypij

连续性

对应二维随机变量的分布函数存在非负可积函数 f(x,y) ,且有下列等式成立,则称该二维随机变量是 二维连续性随机变量;函数 f(x,y) 称为二维连续性随机变量的 概率密度,或称随机变量 X , Y 的 联合概率密度
F ( x , y ) = ∫ − ∞ y ∫ − ∞ x f ( u , v ) d u d v F(x,y) = ∫^y_{-\infty}∫^x_{-\infty}f(u,v)dudv F(x,y)=yxf(u,v)dudv

联合概率密度性质

  1. 非负性 f(X,y) >= 0

  2. ∫ − ∞ ∞ ∫ − ∞ ∞ f ( x , y ) d x d y = F ( ∞ , ∞ ) = 1 ∫^{\infty}_{-\infty}∫^{\infty}_{-\infty}f(x,y)dxdy = F(\infty,\infty)=1 f(x,y)dxdy=F(,)=1

3.2边缘分布

定义

二维随机变量作为一个整体,具有对应的分布函数 F(x,y) ,而作为单独的两个随机变量 X,Y,则具有各自的分布函数,分别记为 F_x(X) ,F_y(Y) ,依次称为关于 X 和关于 Y 的 边缘分布函数
F x ( x ) = P { X ≤ x } = P { X ≤ x , Y < ∞ } = F ( x , ∞ ) F_x(x) = P \lbrace X \leq x \rbrace = P \lbrace X \leq x, Y < \infty \rbrace = F(x,\infty) Fx(x)=P{Xx}=P{Xx,Y<}=F(x,)

F X ( x ) = F ( x , ∞ ) F Y ( y ) = F ( ∞ , y ) F_X(x) = F(x,\infty)\\ F_Y(y) = F(\infty,y) FX(x)=F(x,)FY(y)=F(,y)

离散型

离散型就是固定 X 值,求对应所有 y 值对应的联合分布律值的和
F X ( x ) = F ( x , + ∞ ) = ∑ x i ≤ x ∑ j = 1 ∞ p i j F_X(x ) = F(x,+\infty) = \sum_{x_i\leq x}\sum^\infty_{j=1}p_{ij} FX(x)=F(x,+)=xixj=1pij
分布律
P { X = x i } = ∑ j = 1 ∞ p i j = p i P \lbrace X = x_i \rbrace = \sum^\infty_{j=1}p_{ij} = p_i P{X=xi}=j=1pij=pi

连续性

同理取固定y值区间,取X 所有区间值
F Y ( y ) = F ( + ∞ , y ) = ∫ − ∞ y [ ∫ − ∞ ∞ f ( x , y ) d x ] d y F_Y(y) = F(+\infty,y) = ∫^y_{-\infty}[∫^\infty_{-\infty}f(x,y)dx]dy FY(y)=F(+,y)=y[f(x,y)dx]dy
概率密度
f Y ( x , y ) = ∫ − ∞ ∞ f ( x , y ) d x f_Y(x,y) = ∫^\infty_{-\infty}f(x,y)dx fY(x,y)=f(x,y)dx
一般都使用公式二, 求分布律和概率密度。

3.3条件分布

参考条件概率
P { A ∣ B } = P { A B } P { B } P \lbrace A|B\rbrace =\frac{P\lbrace AB \rbrace}{P\lbrace B \rbrace} P{AB}=P{B}P{AB}
得到对应条件概率公式
P { X = x i ∣ Y = y i } = P { X = x i , Y = y i } P { Y = y i } P\lbrace X = x_i | Y =y_i\rbrace = \frac{P\lbrace X = x_i , Y = y_i \rbrace}{P\lbrace Y = y_i \rbrace} P{X=xiY=yi}=P{Y=yi}P{X=xi,Y=yi}
即任意一个随机变量如 Y = yi 发生的情况为样本空间,x 与 y同时发生的情况为样本点,所得的值为对应条件概率。

离散型

直接求单点概率,即分布律
p i j p i = P { X = x i ∣ Y = y i } = P { X = x i , Y = y i } P { Y = y i } \frac{p_{ij}}{p_i} = P\lbrace X = x_i | Y = y_i \rbrace = \frac{P\lbrace X = x_i, Y = y_i\rbrace}{P\lbrace Y = y_i \rbrace} pipij=P{X=xiY=yi}=P{Y=yi}P{X=xi,Y=yi}
这个就是对应 条件分布律

连续型

求概率密度

f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} fXY(xy)=fY(y)f(x,y)
联合概率密度除以边缘概率密度

3.4相互独立的随机变量

对于独立事件发生的概率有
P { A B } = P { A } ∗ P { B } P\lbrace AB \rbrace = P\lbrace A \rbrace * P \lbrace B \rbrace P{AB}=P{A}P{B}
对比该节则有
F ( x , y ) = F X ( x ) F Y ( y ) F(x,y) = F_X(x)F_Y(y) F(x,y)=FX(x)FY(y)
联合分布边缘分布 的乘积,此时 x , y 相互独立

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值