概率论与数理统计
第三章
3.1.1 二维随机变量及其分布函数
E
E
E为随机试验,
Ω
\Omega
Ω为样本空间,
X
,
Y
X,Y
X,Y是定义在
Ω
\Omega
Ω上的两个随机变量
(
X
,
Y
)
(X,Y)
(X,Y)称为二维随机向量/变量
联合分布
分布函数:
F
(
x
,
y
)
=
P
(
X
≤
x
,
Y
≤
y
)
F(x,y)=P(X\leq x,Y\leq y)
F(x,y)=P(X≤x,Y≤y)(
X
,
Y
X,Y
X,Y的联合分布函数)
性质:
- 0 ≤ F ( x , y ) ≤ 1 0\leq F(x,y)\leq1 0≤F(x,y)≤1
- F ( x , y ) F(x,y) F(x,y)是 x x x或 y y y的不减函数
- F ( − ∞ , y ) = 0 , F ( x , − ∞ ) = 0 , F ( − ∞ , − ∞ ) = 0 , F ( + ∞ , + ∞ ) = 1 F(-\infin,y)=0,F(x,-\infin)=0,F(-\infin,-\infin)=0,F(+\infin,+\infin)=1 F(−∞,y)=0,F(x,−∞)=0,F(−∞,−∞)=0,F(+∞,+∞)=1
- F ( x , y ) F(x,y) F(x,y)分别关于 x , y x,y x,y右连续
- x 1 < x 2 , y 1 < y 2 x_1<x_2,y_1<y_2 x1<x2,y1<y2,则 P ( x 1 < X ≤ x 2 , y 1 < Y ≤ y 2 ) = F ( x 2 , y 2 ) − F ( x 2 , y 1 ) − F ( x 1 , y 2 ) + F ( x 1 , y 1 ) P(x_1<X\leq x_2,y_1<Y\leq y_2)=F(x_2,y_2)-F(x_2,y_1)-F(x_1,y_2)+F(x_1,y_1) P(x1<X≤x2,y1<Y≤y2)=F(x2,y2)−F(x2,y1)−F(x1,y2)+F(x1,y1)
边缘分布
F
X
(
x
)
=
P
(
X
≤
x
)
=
F
(
x
,
+
∞
)
=
P
(
X
≤
x
,
Y
<
+
∞
)
F_X(x)=P(X\leq x)=F(x,+\infin)=P(X\leq x,Y<+\infin)
FX(x)=P(X≤x)=F(x,+∞)=P(X≤x,Y<+∞)
F
Y
(
y
)
=
P
(
Y
≤
y
)
=
F
(
+
∞
,
y
)
=
P
(
X
<
+
∞
,
Y
≤
y
)
F_Y(y)=P(Y\leq y)=F(+\infin,y)=P(X<+\infin,Y\leq y)
FY(y)=P(Y≤y)=F(+∞,y)=P(X<+∞,Y≤y)
3.1.2 二维离散型的联合分布和边缘分布
X
\
Y
1
2
3
1
0
1
/
2
1
/
8
2
1
/
8
1
/
8
1
/
8
\begin{array}{c|c} X\backslash Y & 1 & 2 & 3\\ \hline 1 & 0 & 1/2 & 1/8 \\ 2 & 1/8 & 1/8 & 1/8 \end{array}
X\Y12101/821/21/831/81/8
(联合分布表)
P
(
X
=
x
i
,
Y
=
y
j
)
=
P
i
j
P(X=x_i,Y=y_j)=P_{ij}
P(X=xi,Y=yj)=Pij
性质:
- P i j ≥ 0 P_{ij}\geq0 Pij≥0
- ∑ i ∑ j P i j = 1 \displaystyle\sum_i\sum_jP_{ij}=1 i∑j∑Pij=1
F ( x , y ) = P ( X ≤ x , Y ≤ y ) = ∑ X i ≤ x ∑ Y j ≤ y P i j F(x,y)=P(X\leq x,Y\leq y)=\displaystyle\sum_{X_i\leq x}\sum_{Y_j\leq y}P_{ij} F(x,y)=P(X≤x,Y≤y)=Xi≤x∑Yj≤y∑Pij
边缘分布:
对行/列求和
联合分布可唯一确定边缘分布,边缘分布不能确定联合分布( X , Y X,Y X,Y独立)
3.1.3 二维连续型的联合分布和边缘分布
联合分布
F ( x , y ) = P ( X ≤ x , Y ≤ y ) = ∫ − ∞ x ∫ − ∞ y f ( s , t ) d s d t F(x,y)=P(X\leq x,Y\leq y)=\displaystyle\int_{-\infin}^x\int_{-\infin}^yf(s,t)dsdt F(x,y)=P(X≤x,Y≤y)=∫−∞x∫−∞yf(s,t)dsdt
分布函数 F ( x , y ) F(x,y) F(x,y),联合密度函数 f ( x , y ) f(x,y) f(x,y)
性质:
- f ( x , y ) ≥ 0 f(x,y)\geq0 f(x,y)≥0
- ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x d y = 1 \displaystyle\int_{-\infin}^{+\infin}\int_{-\infin}^{+\infin}f(x,y)dxdy=1 ∫−∞+∞∫−∞+∞f(x,y)dxdy=1
- ∂ 2 F ( x , y ) ∂ x ∂ y = f ( x , y ) \displaystyle\frac{\partial^2F(x,y)}{\partial x\partial y}=f(x,y) ∂x∂y∂2F(x,y)=f(x,y)
- G G G是 X Y XY XY平面上的区域, P ( ( X , Y ) ∈ G ) = ∬ G f ( x , y ) d x d y P((X,Y)\in G)=\displaystyle\iint\limits_{G}f(x,y)dxdy P((X,Y)∈G)=G∬f(x,y)dxdy
例题
【例1】
f
(
x
,
y
)
=
{
C
(
x
,
y
)
∈
G
0
e
l
s
e
f(x,y)=\begin{cases} C & (x,y)\in G\\ 0 & else \end{cases}
f(x,y)={C0(x,y)∈Gelse
G
:
x
2
+
y
2
≤
r
2
G:x^2+y^2\leq r^2
G:x2+y2≤r2
求
C
C
C
解:
∫
−
∞
+
∞
∫
−
∞
+
∞
f
(
x
,
y
)
d
x
d
y
=
∬
G
C
d
x
d
y
=
C
π
r
2
=
1
\displaystyle\int_{-\infin}^{+\infin}\int_{-\infin}^{+\infin}f(x,y)dxdy=\iint\limits_{G}Cdxdy=C\pi r^2=1
∫−∞+∞∫−∞+∞f(x,y)dxdy=G∬Cdxdy=Cπr2=1
C
=
1
π
r
2
C=\displaystyle\frac{1}{\pi r^2}
C=πr21
均匀分布定义:
f
(
x
,
y
)
=
{
1
S
G
(
x
,
y
)
∈
G
0
e
l
s
e
f(x,y)=\begin{cases} \displaystyle\frac{1}{S_G} & (x,y)\in G\\ 0 & else \end{cases}
f(x,y)=⎩⎨⎧SG10(x,y)∈Gelse
【例2】
f
(
x
,
y
)
=
{
e
−
(
x
+
y
)
x
>
0
,
y
>
0
0
e
l
s
e
f(x,y)=\begin{cases} e^{-(x+y)} & x>0,y>0\\ 0 & else \end{cases}
f(x,y)={e−(x+y)0x>0,y>0else
G
:
x
≥
0
,
y
≥
0
,
x
+
y
≤
1
G:x\geq 0,y\geq 0,x+y\leq 1
G:x≥0,y≥0,x+y≤1
求:1.
F
(
x
,
y
)
F(x,y)
F(x,y);2.
P
(
(
x
,
y
)
∈
G
)
P((x,y)\in G)
P((x,y)∈G);3.
F
X
(
x
)
,
F
Y
(
y
)
F_X(x),F_Y(y)
FX(x),FY(y)
解:
- F ( x , y ) = P ( X ≤ x , Y ≤ y ) F(x,y)=P(X\leq x,Y\leq y) F(x,y)=P(X≤x,Y≤y)
-
x
>
0
,
y
>
0
x>0,y>0
x>0,y>0
F ( x , y ) = ∫ − ∞ x ∫ − ∞ y f ( s , t ) d s d y = ∫ 0 x ∫ 0 y e − s e − t d s d y F(x,y)=\displaystyle\int_{-\infin}^x\int_{-\infin}^yf(s,t)dsdy=\int_0^x\int_0^ye^{-s}e^{-t}dsdy F(x,y)=∫−∞x∫−∞yf(s,t)dsdy=∫0x∫0ye−se−tdsdy
已知 ∫ a b ∫ c d f ( x , y ) d x d y = ∫ a b ∫ c d f 1 ( x ) f 2 ( y ) d x d y = ∫ a b f 1 ( x ) d x ⋅ ∫ c d f 2 ( y ) d y \displaystyle\int_a^b\int_c^df(x,y)dxdy=\int_a^b\int_c^df_1(x)f_2(y)dxdy=\int_a^bf_1(x)dx\cdot\int_c^df_2(y)dy ∫ab∫cdf(x,y)dxdy=∫ab∫cdf1(x)f2(y)dxdy=∫abf1(x)dx⋅∫cdf2(y)dy(高数知识)
故 F ( x , y ) = ∫ 0 x e − s d s ⋅ ∫ 0 y e − t d y = ( 1 − e − x ) ( 1 − e − y ) \displaystyle F(x,y)=\int_0^xe^{-s}ds\cdot\int_0^ye^{-t}dy=(1-e^{-x})(1-e^{-y}) F(x,y)=∫0xe−sds⋅∫0ye−tdy=(1−e−x)(1−e−y) - x < 0 x<0 x<0或 y < 0 y<0 y<0, F ( x , y ) = 0 F(x,y)=0 F(x,y)=0
-
P ( ( x , y ) ∈ G ) = ∬ G f ( x , y ) d x d y = ∬ G e − ( x + y ) d x d y = ∫ 0 1 d x ∫ 0 1 − x e − ( x + y ) d y = 1 − 2 e − 1 P((x,y)\in G)=\displaystyle\iint\limits_{G}f(x,y)dxdy=\iint\limits_{G}e^{-(x+y)}dxdy=\int_0^1dx\int_0^{1-x}e^{-(x+y)}dy=1-2e^{-1} P((x,y)∈G)=G∬f(x,y)dxdy=G∬e−(x+y)dxdy=∫01dx∫01−xe−(x+y)dy=1−2e−1
-
F X ( x ) = lim y → + ∞ F ( x , y ) = { 1 − e − x x > 0 0 x ≤ 0 F_X(x)=\lim\limits_{y\to+\infin}F(x,y)= \begin{cases} 1-e^{-x} & x>0\\ 0 & x\leq0 \end{cases} FX(x)=y→+∞limF(x,y)={1−e−x0x>0x≤0
边缘分布
F
X
(
x
)
=
F
(
x
,
+
∞
)
=
∫
−
∞
x
[
∫
−
∞
+
∞
f
(
s
,
t
)
d
t
]
d
s
F_X(x)=F(x,+\infin)=\displaystyle\int_{-\infin}^x[\int_{-\infin}^{+\infin}f(s,t)dt]ds
FX(x)=F(x,+∞)=∫−∞x[∫−∞+∞f(s,t)dt]ds
对上式求导
已知
[
∫
a
f
(
x
)
g
(
t
)
d
t
]
′
=
f
′
(
x
)
g
(
f
(
x
)
)
[\displaystyle\int_a^{f(x)}g(t)dt]'=f'(x)g(f(x))
[∫af(x)g(t)dt]′=f′(x)g(f(x))(高数知识)
则:
f
X
(
x
)
=
∫
−
∞
+
∞
f
(
x
,
t
)
d
t
=
∫
−
∞
+
∞
f
(
x
,
y
)
d
y
f_X(x)=\displaystyle\int_{-\infin}^{+\infin}f(x,t)dt=\displaystyle\int_{-\infin}^{+\infin}f(x,y)dy
fX(x)=∫−∞+∞f(x,t)dt=∫−∞+∞f(x,y)dy
f
Y
(
y
)
=
∫
−
∞
+
∞
f
(
s
,
y
)
d
s
=
∫
−
∞
+
∞
f
(
x
,
y
)
d
x
f_Y(y)=\displaystyle\int_{-\infin}^{+\infin}f(s,y)ds=\displaystyle\int_{-\infin}^{+\infin}f(x,y)dx
fY(y)=∫−∞+∞f(s,y)ds=∫−∞+∞f(x,y)dx
例题
【例3】
已知
f
(
x
,
y
)
=
1
π
2
(
1
+
x
2
)
(
1
+
y
2
)
f(x,y)=\displaystyle\frac{1}{\pi^2(1+x^2)(1+y^2)}
f(x,y)=π2(1+x2)(1+y2)1,求
f
X
(
x
)
,
f
Y
(
y
)
f_X(x),f_Y(y)
fX(x),fY(y)
解:
f
X
(
x
)
=
∫
−
∞
+
∞
1
π
2
(
1
+
x
2
)
(
1
+
y
2
)
d
y
=
1
π
2
(
1
+
x
2
)
arctan
y
∣
−
∞
+
∞
=
1
π
(
1
+
x
2
)
f_X(x)=\displaystyle\int_{-\infin}^{+\infin}\frac{1}{\pi^2(1+x^2)(1+y^2)}dy=\frac{1}{\pi^2(1+x^2)}\arctan y|_{-\infin}^{+\infin}=\frac{1}{\pi(1+x^2)}
fX(x)=∫−∞+∞π2(1+x2)(1+y2)1dy=π2(1+x2)1arctany∣−∞+∞=π(1+x2)1
f
Y
(
y
)
=
∫
−
∞
+
∞
1
π
2
(
1
+
x
2
)
(
1
+
y
2
)
d
x
=
1
π
2
(
1
+
y
2
)
arctan
x
∣
−
∞
+
∞
=
1
π
(
1
+
y
2
)
f_Y(y)=\displaystyle\int_{-\infin}^{+\infin}\frac{1}{\pi^2(1+x^2)(1+y^2)}dx=\frac{1}{\pi^2(1+y^2)}\arctan x|_{-\infin}^{+\infin}=\frac{1}{\pi(1+y^2)}
fY(y)=∫−∞+∞π2(1+x2)(1+y2)1dx=π2(1+y2)1arctanx∣−∞+∞=π(1+y2)1
定理:
f
(
x
,
y
)
=
f
X
(
x
)
⋅
f
Y
(
y
)
f(x,y)=f_X(x)\cdot f_Y(y)
f(x,y)=fX(x)⋅fY(y)
【例4】
f
(
x
,
y
)
=
{
1
π
r
2
x
2
+
y
2
≤
r
0
e
l
s
e
f(x,y)=\begin{cases} \displaystyle\frac{1}{\pi r^2} & x^2+y^2\leq r\\ 0 & else \end{cases}
f(x,y)=⎩⎨⎧πr210x2+y2≤relse
求
f
X
(
x
)
,
f
Y
(
y
)
f_X(x),f_Y(y)
fX(x),fY(y)
解:
- ∣ x ∣ ≤ r |x|\leq r ∣x∣≤r时, f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y = ∫ − r 2 − x 2 r 2 − x 2 1 π r 2 d y = 2 r 2 − x 2 π r 2 f_X(x)=\displaystyle\int_{-\infin}^{+\infin}f(x,y)dy=\int_{-\sqrt{r^2-x^2}}^{\sqrt{r^2-x^2}}\frac{1}{\pi r^2}dy=\frac{2\sqrt{r^2-x^2}}{\pi r^2} fX(x)=∫−∞+∞f(x,y)dy=∫−r2−x2r2−x2πr21dy=πr22r2−x2
- ∣ x ∣ > r |x|>r ∣x∣>r时, f X ( x ) = 0 f_X(x)=0 fX(x)=0
综上,
f
X
(
x
)
=
{
2
r
2
−
x
2
π
r
2
∣
x
∣
≤
r
0
e
l
s
e
f_X(x)= \begin{cases} \displaystyle\frac{2\sqrt{r^2-x^2}}{\pi r^2} & |x|\leq r\\ 0&else \end{cases}
fX(x)=⎩⎨⎧πr22r2−x20∣x∣≤relse
同理,
f
Y
(
y
)
=
{
2
r
2
−
y
2
π
r
2
∣
y
∣
≤
r
0
e
l
s
e
f_Y(y)= \begin{cases} \displaystyle\frac{2\sqrt{r^2-y^2}}{\pi r^2} & |y|\leq r\\ 0&else \end{cases}
fY(y)=⎩⎨⎧πr22r2−y20∣y∣≤relse
均匀分布:
一维变量
x
,
y
x,y
x,y都属于均匀分布时,二维随机变量并非属于均匀分布
正态分布:
- 二维正态分布的边缘分布也是正态分布
- 两个边缘分布是正态分布,二维随机变量不一定是二维正态分布
3.2.1 条件分布
F ( x ) = P ( X ≤ x ) F(x)=P(X\leq x) F(x)=P(X≤x)
条件分布:
F
(
x
∣
A
)
=
P
(
X
≤
x
∣
A
)
F(x|A)=P(X\leq x|A)
F(x∣A)=P(X≤x∣A)
例题
【例1】
求
f
(
x
)
=
1
π
(
1
+
x
2
)
f(x)=\displaystyle\frac{1}{\pi(1+x^2)}
f(x)=π(1+x2)1在
x
>
1
x>1
x>1的条件下的条件分布
解:
F
(
X
∣
x
>
1
)
=
P
(
X
≤
x
∣
X
>
1
)
=
P
(
X
≤
x
,
X
>
1
)
P
(
X
>
1
)
F(X|x>1)=P(X\leq x|X>1)=\displaystyle\frac{P(X\leq x,X>1)}{P(X>1)}
F(X∣x>1)=P(X≤x∣X>1)=P(X>1)P(X≤x,X>1)
- x ≤ 1 x\leq 1 x≤1时, F ( X ∣ x > 1 ) = 0 F(X|x>1)=0 F(X∣x>1)=0
-
x
>
1
x>1
x>1时,
P
(
1
<
X
≤
x
)
=
∫
1
x
1
π
(
1
+
x
2
)
d
t
=
1
π
arctan
t
∣
1
x
=
1
π
arctan
x
−
1
4
P(1<X\leq x)=\displaystyle\int_1^x\frac{1}{\pi(1+x^2)}dt=\frac{1}{\pi}\arctan t|_1^x=\frac{1}{\pi}\arctan x-\frac{1}{4}
P(1<X≤x)=∫1xπ(1+x2)1dt=π1arctant∣1x=π1arctanx−41
P ( X > 1 ) = ∫ 1 + ∞ 1 π ( 1 + x 2 ) d t = 1 4 P(X>1)=\displaystyle\int_1^{+\infin}\frac{1}{\pi(1+x^2)}dt=\frac{1}{4} P(X>1)=∫1+∞π(1+x2)1dt=41
因此, F ( X ∣ x > 1 ) = { 0 x ≤ 1 4 π arctan x − 1 x > 1 F(X|x>1)=\begin{cases} 0 & x\leq1\\ \displaystyle\frac{4}{\pi}\arctan x-1 & x>1 \end{cases} F(X∣x>1)=⎩⎨⎧0π4arctanx−1x≤1x>1
3.2.2 离散型的条件分布
X 1 \ X 2 0 1 0 0.1 0.3 1 0.3 0.3 \begin{array}{c|c} X_1\backslash X_2 & 0 & 1\\ \hline 0 & 0.1 & 0.3\\ 1 & 0.3 & 0.3 \end{array} X1\X20100.10.310.30.3
P ( X 2 = 0 ∣ X 1 = 0 ) = 0.1 / 0.4 = 0.25 P(X_2=0|X_1=0)=0.1/0.4=0.25 P(X2=0∣X1=0)=0.1/0.4=0.25
3.2.3 连续型的条件分布
二维随机变量 ( X , Y ) (X,Y) (X,Y),已知 f ( x , y ) , f X ( x ) , f Y ( y ) f(x,y),f_X(x),f_Y(y) f(x,y),fX(x),fY(y),若 f Y ( y ) > 0 f_Y(y)>0 fY(y)>0,在 Y = y Y=y Y=y条件下, F ( x ∣ y ) = ∫ − ∞ x f ( u , y ) f Y ( y ) d u F(x|y)=\displaystyle\int_{-\infin}^x\frac{f(u,y)}{f_Y(y)}du F(x∣y)=∫−∞xfY(y)f(u,y)du
F ( y ∣ x ) = ∫ − ∞ y f ( x , v ) f X ( x ) d v F(y|x)=\displaystyle\int_{-\infin}^y\frac{f(x,v)}{f_X(x)}dv F(y∣x)=∫−∞yfX(x)f(x,v)dv
f
(
x
∣
y
)
=
f
(
x
,
y
)
f
Y
(
y
)
f(x|y)=\displaystyle\frac{f(x,y)}{f_Y(y)}
f(x∣y)=fY(y)f(x,y)
f
(
y
∣
x
)
=
f
(
x
,
y
)
f
X
(
x
)
f(y|x)=\displaystyle\frac{f(x,y)}{f_X(x)}
f(y∣x)=fX(x)f(x,y)
理论证明:
P
(
X
≤
x
∣
Y
=
y
)
=
P
(
X
≤
x
,
Y
=
y
)
P
(
Y
=
y
)
=
lim
ϵ
→
0
P
(
X
≤
x
,
y
≤
Y
≤
y
+
ϵ
)
P
(
y
≤
Y
≤
y
+
ϵ
)
=
lim
ϵ
→
0
∫
−
∞
x
∫
y
y
+
ϵ
f
(
u
,
v
)
d
v
d
u
∫
y
y
+
ϵ
f
Y
(
v
)
d
v
=
lim
ϵ
→
0
∫
−
∞
x
1
ϵ
∫
y
y
+
ϵ
f
(
u
,
v
)
d
v
d
u
1
ϵ
∫
y
y
+
ϵ
f
Y
(
v
)
d
v
P(X\leq x|Y=y)=\displaystyle\frac{P(X\leq x,Y=y)}{P(Y=y)}=\lim\limits_{\epsilon\to0}\frac{P(X\leq x,y\leq Y\leq y+\epsilon)}{P(y\leq Y\leq y+\epsilon)}=\lim\limits_{\epsilon\to0}\frac{\displaystyle\int_{-\infin}^x\int_y^{y+\epsilon}f(u,v)dvdu}{\displaystyle\int_y^{y+\epsilon}f_Y(v)dv}=\lim\limits_{\epsilon\to0}\frac{\displaystyle\int_{-\infin}^x\frac{1}{\epsilon}\int_y^{y+\epsilon}f(u,v)dvdu}{\displaystyle\frac{1}{\epsilon}\int_y^{y+\epsilon}f_Y(v)dv}
P(X≤x∣Y=y)=P(Y=y)P(X≤x,Y=y)=ϵ→0limP(y≤Y≤y+ϵ)P(X≤x,y≤Y≤y+ϵ)=ϵ→0lim∫yy+ϵfY(v)dv∫−∞x∫yy+ϵf(u,v)dvdu=ϵ→0limϵ1∫yy+ϵfY(v)dv∫−∞xϵ1∫yy+ϵf(u,v)dvdu
由积分中值定理(存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ∈(a,b), s . t . ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) s.t. \displaystyle\int_a^bf(x)dx=f(\xi)(b-a) s.t.∫abf(x)dx=f(ξ)(b−a)),可得:
存在 ξ ∈ ( y , y + ϵ ) \xi\in(y,y+\epsilon) ξ∈(y,y+ϵ), s . t . ∫ y y + ϵ f Y ( v ) d v = f ( ξ ) ϵ = f ( y ) ϵ s.t.\displaystyle\int_y^{y+\epsilon}f_Y(v)dv=f(\xi)\epsilon=f(y)\epsilon s.t.∫yy+ϵfY(v)dv=f(ξ)ϵ=f(y)ϵ
故 P ( X ≤ x ∣ Y = y ) = ∫ − ∞ x f ( u , v ) d u f Y ( y ) = ∫ − ∞ x u , y f Y ( y ) d u P(X\leq x|Y=y)=\displaystyle\frac{\displaystyle\int_{-\infin}^xf(u,v)du}{f_Y(y)}=\int_{-\infin}^x\frac{u,y}{f_Y(y)}du P(X≤x∣Y=y)=fY(y)∫−∞xf(u,v)du=∫−∞xfY(y)u,ydu
例题
【例1】
f
(
x
,
y
)
=
1
π
2
(
1
+
x
2
)
(
1
+
y
2
)
f(x,y)=\displaystyle\frac{1}{\pi^2(1+x^2)(1+y^2)}
f(x,y)=π2(1+x2)(1+y2)1
则
f
X
(
x
)
=
1
π
(
1
+
x
2
)
,
f
Y
(
y
)
=
1
π
(
1
+
y
2
)
f_X(x)=\displaystyle\frac{1}{\pi(1+x^2)},f_Y(y)=\frac{1}{\pi(1+y^2)}
fX(x)=π(1+x2)1,fY(y)=π(1+y2)1
因此:
f
(
x
∣
y
)
=
f
(
x
,
y
)
f
Y
(
y
)
=
1
π
(
1
+
x
2
)
f(x|y)=\displaystyle\frac{f(x,y)}{f_Y(y)}=\frac{1}{\pi(1+x^2)}
f(x∣y)=fY(y)f(x,y)=π(1+x2)1
f
(
x
∣
y
)
=
f
(
x
,
y
)
f
X
(
x
)
=
1
π
(
1
+
y
2
)
f(x|y)=\displaystyle\frac{f(x,y)}{f_X(x)}=\frac{1}{\pi(1+y^2)}
f(x∣y)=fX(x)f(x,y)=π(1+y2)1
【例2】
f
(
x
,
y
)
=
{
1
π
r
2
x
2
+
y
2
≤
r
2
0
e
l
s
e
f(x,y)=\begin{cases} \displaystyle\frac{1}{\pi r^2} & x^2+y^2\leq r^2\\ 0 & else \end{cases}
f(x,y)=⎩⎨⎧πr210x2+y2≤r2else
则
f
X
(
x
)
=
{
2
r
2
−
x
2
π
r
2
∣
x
∣
≤
r
0
e
l
s
e
f_X(x)=\begin{cases} \displaystyle\frac{2\sqrt{r^2-x^2}}{\pi r^2} & |x|\leq r\\ 0 & else \end{cases}
fX(x)=⎩⎨⎧πr22r2−x20∣x∣≤relse
f
Y
(
y
)
=
{
2
r
2
−
y
2
π
r
2
∣
y
∣
≤
r
0
e
l
s
e
f_Y(y)=\begin{cases} \displaystyle\frac{2\sqrt{r^2-y^2}}{\pi r^2} & |y|\leq r\\ 0 & else \end{cases}
fY(y)=⎩⎨⎧πr22r2−y20∣y∣≤relse
-
若 ∣ y ∣ < r |y|<r ∣y∣<r, f ( x ∣ y ) = f ( x , y ) f Y ( y ) = { 1 2 r 2 − y 2 − r 2 − y 2 ≤ x ≤ r 2 − y 2 0 e l s e f(x|y)=\displaystyle\frac{f(x,y)}{f_Y(y)}=\begin{cases} \displaystyle\frac{1}{2\sqrt{r^2-y^2}} & -\sqrt{r^2-y^2}\leq x\leq\sqrt{r^2-y^2}\\ 0 & else \end{cases} f(x∣y)=fY(y)f(x,y)=⎩⎨⎧2r2−y210−r2−y2≤x≤r2−y2else
-
P ( X > 0 ∣ Y = 0 ) = ∫ 0 + ∞ 1 2 r d x = 1 2 P(X>0|Y=0)=\displaystyle\int_0^{+\infin}\frac{1}{2r}dx=\frac{1}{2} P(X>0∣Y=0)=∫0+∞2r1dx=21
3.2.4 随机变量的独立性
判断随机变量独立性的条件(任选):
- f ( x ∣ y ) = f X ( x ) = f ( x , y ) f Y ( y ) f(x|y)=f_X(x)=\displaystyle\frac{f(x,y)}{f_Y(y)} f(x∣y)=fX(x)=fY(y)f(x,y)(即: f ( x , y ) = f X ( x ) f Y ( y ) f(x,y)=f_X(x)f_Y(y) f(x,y)=fX(x)fY(y))(常见)
- F ( x , y ) = F X ( x ) F Y ( y ) F(x,y)=F_X(x)F_Y(y) F(x,y)=FX(x)FY(y)
- P ( X ∈ S x , Y ∈ S y ) = P ( X ∈ S x ) P ( Y ∈ S y ) P(X\in S_x,Y\in S_y)=P(X\in S_x)P(Y\in S_y) P(X∈Sx,Y∈Sy)=P(X∈Sx)P(Y∈Sy)
二维离散型的独立性
P ( X = x i , Y = y j ) = P ( X = x i ) P ( Y = y j ) P(X=x_i,Y=y_j)=P(X=x_i)P(Y=y_j) P(X=xi,Y=yj)=P(X=xi)P(Y=yj)
二维连续型的独立性
f ( x , y ) = f X ( x ) f Y ( y ) f(x,y)=f_X(x)f_Y(y) f(x,y)=fX(x)fY(y)
例题
【例2】经理到达办公室时间为8-12时均匀分布,秘书到达时间为7-9时均匀分布,求两人到达时间不超过5 min(1/12 hour)的概率
解:
设
X
X
X为经理到达时间,
Y
Y
Y为秘书到达时间
f
X
(
x
)
=
{
1
4
8
<
x
<
12
0
e
l
s
e
f_X(x)=\begin{cases} \displaystyle\frac{1}{4} & 8<x<12\\ 0 & else \end{cases}
fX(x)=⎩⎨⎧4108<x<12else
f
Y
(
y
)
=
{
1
2
7
<
y
<
9
0
e
l
s
e
f_Y(y)=\begin{cases} \displaystyle\frac{1}{2} & 7<y<9\\ 0 & else \end{cases}
fY(y)=⎩⎨⎧2107<y<9else
X
,
Y
X,Y
X,Y相互独立
f
(
x
,
y
)
=
f
X
(
x
)
f
Y
(
y
)
=
{
1
8
8
<
x
<
12
,
7
<
y
<
9
0
e
l
s
e
f(x,y)=f_X(x)f_Y(y)=\begin{cases} \displaystyle\frac{1}{8} & 8<x<12,7<y<9\\ 0 & else \end{cases}
f(x,y)=fX(x)fY(y)=⎩⎨⎧8108<x<12,7<y<9else
x − 1 12 ≤ y ≤ x + 1 12 \displaystyle x-\frac{1}{12}\leq y\leq x+\frac{1}{12} x−121≤y≤x+121
P
(
∣
X
−
Y
∣
≤
1
12
)
=
∬
G
f
(
x
,
y
)
d
x
d
y
=
∬
G
1
8
d
x
d
y
=
1
48
P(|X-Y|\leq\displaystyle\frac{1}{12})=\displaystyle\iint\limits_Gf(x,y)dxdy=\iint\limits_G\frac{1}{8}dxdy=\frac{1}{48}
P(∣X−Y∣≤121)=G∬f(x,y)dxdy=G∬81dxdy=481
变量独立,构造的函数也独立
定理: X , Y X,Y X,Y独立,则 g 1 ( X ) , g 2 ( Y ) g_1(X),g_2(Y) g1(X),g2(Y)也独立
3.3.1 二维离散型随机变量函数的分布
举例
【例1】
X
\
Y
4
4.2
5
0.2
0.4
5.1
0.3
0.1
\begin{array}{c|c} X\backslash Y & 4 & 4.2\\ \hline 5 & 0.2 & 0.4\\ 5.1 & 0.3 & 0.1 \end{array}
X\Y55.140.20.34.20.40.1
求
Z
=
X
Y
Z=XY
Z=XY:
Z
20
21
20.4
21.42
P
0.2
0.4
0.3
0.1
\begin{array}{c|c} Z & 20 & 21 & 20.4 & 21.42\\ \hline P & 0.2 & 0.4 & 0.3 & 0.1 \end{array}
ZP200.2210.420.40.321.420.1
【例2】
x
1
,
x
2
x_1,x_2
x1,x2独立,
0
−
1
0-1
0−1分布,参数为
p
p
p,求
x
1
+
x
2
x_1+x_2
x1+x2
x 1 0 1 P 1 − p p \begin{array}{c|c} x_1 & 0 & 1\\ \hline P & 1-p & p \end{array} x1P01−p1p
x 2 0 1 P 1 − p p \begin{array}{c|c} x_2 & 0 & 1\\ \hline P & 1-p & p \end{array} x2P01−p1p
因此:
x
1
+
x
2
0
1
2
P
(
1
−
p
)
2
2
p
(
1
−
p
)
p
2
\begin{array}{c|c} x_1+x_2 & 0 & 1 & 2\\ \hline P & (1-p)^2 & 2p(1-p) & p^2 \end{array}
x1+x2P0(1−p)212p(1−p)2p2
x 1 + x 2 ∼ B ( 2 , p ) x_1+x_2\sim B(2,p) x1+x2∼B(2,p)
【例3】
X
,
Y
X,Y
X,Y独立,分别服从参数为
λ
1
,
λ
2
\lambda_1,\lambda_2
λ1,λ2的泊松分布,求
Z
=
X
+
Y
Z=X+Y
Z=X+Y
泊松分布: P ( X = k ) = λ k k ! e − λ P(X=k)=\displaystyle\frac{\lambda^k}{k!}e^{-\lambda} P(X=k)=k!λke−λ
P ( Z = k ) = ∑ i = 0 k P ( X = i , Y = k − i ) = ∑ i = 0 k P ( X = i ) P ( Y = k − i ) = ∑ i = 0 k λ 1 i i ! e − λ 1 λ 2 k − i ( k − i ) ! e − λ 2 = ( λ 1 + λ 2 ) k k ! e − ( λ 1 + λ 2 ) P(Z=k)=\displaystyle\sum_{i=0}^kP(X=i,Y=k-i)=\sum_{i=0}^kP(X=i)P(Y=k-i)=\sum_{i=0}^k\frac{\lambda_1^i}{i!}e^{-\lambda_1}\frac{\lambda_2^{k-i}}{(k-i)!}e^{-\lambda_2}=\frac{(\lambda_1+\lambda_2)^k}{k!}e^{-(\lambda_1+\lambda_2)} P(Z=k)=i=0∑kP(X=i,Y=k−i)=i=0∑kP(X=i)P(Y=k−i)=i=0∑ki!λ1ie−λ1(k−i)!λ2k−ie−λ2=k!(λ1+λ2)ke−(λ1+λ2)
Z
∼
P
(
λ
1
+
λ
2
)
Z\sim P(\lambda_1+\lambda_2)
Z∼P(λ1+λ2)
(泊松分布具有可加性)
3.3.2 二维连续型随机变量函数的分布
二维随机变量 ( X , Y ) (X,Y) (X,Y),联合密度函数 f ( x , y ) f(x,y) f(x,y), Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y)
-
F
Z
(
z
)
=
P
(
X
≤
z
)
=
P
(
g
(
X
,
Y
)
≤
z
)
=
∬
D
z
f
(
x
,
y
)
d
x
d
y
F_Z(z)=P(X\leq z)=P(g(X,Y)\leq z)=\displaystyle\iint\limits_{D_z}f(x,y)dxdy
FZ(z)=P(X≤z)=P(g(X,Y)≤z)=Dz∬f(x,y)dxdy
( D z = { ( x , y ) ∣ g ( x , y ) ≤ z } D_z=\{(x,y)|g(x,y)\leq z\} Dz={(x,y)∣g(x,y)≤z}) - 对上式两边求导:
f Z ( z ) = … … f_Z(z)=…… fZ(z)=……
例题
【例1】
f
(
x
,
y
)
=
1
2
π
e
−
x
2
+
y
2
2
f(x,y)=\displaystyle\frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}}
f(x,y)=2π1e−2x2+y2,求
Z
=
X
2
+
Y
2
Z=\sqrt{X^2+Y^2}
Z=X2+Y2
解:
- z < 0 z<0 z<0时, F Z ( z ) = P ( Z ≤ z ) = P ( X 2 + Y 2 ≤ z ) = 0 F_Z(z)=P(Z\leq z)=P(\sqrt{X^2+Y^2}\leq z)=0 FZ(z)=P(Z≤z)=P(X2+Y2≤z)=0
-
z
≥
0
z\geq0
z≥0时,
F
Z
(
z
)
=
P
(
Z
≤
z
)
=
P
(
X
2
+
Y
2
≤
z
)
=
P
(
X
2
+
Y
2
≤
z
2
)
=
∬
G
1
2
π
e
−
x
2
+
y
2
2
d
x
d
y
=
∫
0
2
π
∫
0
z
1
2
π
e
−
x
2
+
y
2
2
r
d
r
=
∫
0
2
π
∫
0
z
1
2
π
e
−
x
2
+
y
2
2
1
2
d
r
2
=
1
−
e
−
z
2
F_Z(z)=P(Z\leq z)=P(\sqrt{X^2+Y^2}\leq z)=P(X^2+Y^2\leq z^2)=\displaystyle\iint\limits_G\frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}}dxdy=\int_0^{2\pi}\int_0^z\frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}}rdr=\int_0^{2\pi}\int_0^z\frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}}\frac{1}{2}dr^2=1-e^{-z^2}
FZ(z)=P(Z≤z)=P(X2+Y2≤z)=P(X2+Y2≤z2)=G∬2π1e−2x2+y2dxdy=∫02π∫0z2π1e−2x2+y2rdr=∫02π∫0z2π1e−2x2+y221dr2=1−e−z2
因此,
F Z ( z ) = { 0 z < 0 1 − e − z 2 z ≥ 0 F_Z(z)=\begin{cases} 0 & z<0\\ 1-e^{-z^2} & z\geq0 \end{cases} FZ(z)={01−e−z2z<0z≥0
f Z ( z ) = { 0 z < 0 2 z e − z 2 z ≥ 0 f_Z(z)=\begin{cases} 0 & z<0\\ 2ze^{-z^2} & z\geq0 \end{cases} fZ(z)={02ze−z2z<0z≥0
两种特殊情况
1. Z = X + Y Z=X+Y Z=X+Y
则
F
Z
(
z
)
=
P
(
Z
≤
z
)
=
P
(
X
+
Y
≤
z
)
=
∬
X
+
Y
≤
z
f
(
x
,
y
)
d
x
d
y
=
∫
−
∞
+
∞
d
x
∫
−
∞
z
−
x
f
(
x
,
y
)
d
y
F_Z(z)=P(Z\leq z)=P(X+Y\leq z)=\displaystyle\iint\limits_{X+Y\leq z}f(x,y)dxdy=\int_{-\infin}^{+\infin}dx\int_{-\infin}^{z-x}f(x,y)dy
FZ(z)=P(Z≤z)=P(X+Y≤z)=X+Y≤z∬f(x,y)dxdy=∫−∞+∞dx∫−∞z−xf(x,y)dy
令
t
=
x
+
y
t=x+y
t=x+y,有:
F
Z
(
z
)
=
∫
−
∞
+
∞
d
x
∫
−
∞
z
f
(
x
,
t
−
x
)
d
t
=
∫
−
∞
z
[
∫
−
∞
+
∞
f
(
x
,
t
−
x
)
d
x
]
d
t
F_Z(z)=\displaystyle\int_{-\infin}^{+\infin}dx\int_{-\infin}^zf(x,t-x)dt=\int_{-\infin}^z[\int_{-\infin}^{+\infin}f(x,t-x)dx]dt
FZ(z)=∫−∞+∞dx∫−∞zf(x,t−x)dt=∫−∞z[∫−∞+∞f(x,t−x)dx]dt
两边求导:
f
Z
(
z
)
=
∫
−
∞
+
∞
f
(
x
,
z
−
x
)
d
x
f_Z(z)=\displaystyle\int_{-\infin}^{+\infin}f(x,z-x)dx
fZ(z)=∫−∞+∞f(x,z−x)dx
同理,
f
Z
(
z
)
=
∫
−
∞
+
∞
f
(
z
−
y
,
y
)
d
y
f_Z(z)=\displaystyle\int_{-\infin}^{+\infin}f(z-y,y)dy
fZ(z)=∫−∞+∞f(z−y,y)dy
特别地,当
X
Y
XY
XY独立时,有:
f
Z
(
z
)
=
∫
−
∞
+
∞
f
X
(
x
)
f
Y
(
z
−
x
)
d
x
f_Z(z)=\displaystyle\int_{-\infin}^{+\infin}f_X(x)f_Y(z-x)dx
fZ(z)=∫−∞+∞fX(x)fY(z−x)dx
f
Z
(
z
)
=
∫
−
∞
+
∞
f
X
(
z
−
y
)
f
Y
(
y
)
d
y
f_Z(z)=\displaystyle\int_{-\infin}^{+\infin}f_X(z-y)f_Y(y)dy
fZ(z)=∫−∞+∞fX(z−y)fY(y)dy
(称“卷积公式”)
卷积公式使用条件:
- Z = X + Y Z=X+Y Z=X+Y
- X Y XY XY独立
例
【例2】
X
∼
N
(
0
,
1
)
,
Y
∼
N
(
0
,
1
)
X\sim N(0,1),Y\sim N(0,1)
X∼N(0,1),Y∼N(0,1),
X
Y
XY
XY独立,求
Z
=
X
+
Y
Z=X+Y
Z=X+Y
解:
ϕ
Z
(
z
)
=
∫
−
∞
+
∞
ϕ
X
(
x
)
ϕ
Y
(
z
−
x
)
d
x
=
∫
−
∞
+
∞
1
2
π
e
−
x
2
2
1
2
π
e
−
(
z
−
x
)
2
2
d
x
=
∫
−
∞
+
∞
1
2
π
e
−
z
2
4
e
−
(
x
−
z
2
)
2
d
x
=
1
2
π
e
−
z
2
4
∫
−
∞
+
∞
e
−
(
x
−
z
2
)
2
d
(
x
−
z
2
)
=
1
2
π
2
e
−
z
2
2
(
2
)
2
\phi_Z(z)=\displaystyle\int_{-\infin}^{+\infin}\phi_X(x)\phi_Y(z-x)dx=\int_{-\infin}^{+\infin}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}\frac{1}{\sqrt{2\pi}}e^{-\frac{(z-x)^2}{2}}dx=\int_{-\infin}^{+\infin}\frac{1}{2\pi}e^{-\frac{z^2}{4}}e^{-(x-\frac{z}{2})^2}dx=\frac{1}{2\pi}e^{-\frac{z^2}{4}}\int_{-\infin}^{+\infin}e^{-(x-\frac{z}{2})^2}d(x-\frac{z}{2})=\frac{1}{\sqrt{2\pi}\sqrt{2}}e^{-\frac{z^2}{2(\sqrt{2})^2}}
ϕZ(z)=∫−∞+∞ϕX(x)ϕY(z−x)dx=∫−∞+∞2π1e−2x22π1e−2(z−x)2dx=∫−∞+∞2π1e−4z2e−(x−2z)2dx=2π1e−4z2∫−∞+∞e−(x−2z)2d(x−2z)=2π21e−2(2)2z2
因此, Z ∼ N ( 0 , 2 ) Z\sim N(0,2) Z∼N(0,2)
推论: X ∼ N ( μ 1 , σ 1 2 ) , Y ∼ N ( μ 2 , σ 2 2 ) X\sim N(\mu_1,\sigma_1^2),Y\sim N(\mu_2,\sigma_2^2) X∼N(μ1,σ12),Y∼N(μ2,σ22),则 X + Y ∼ N ( μ 1 + μ 2 , σ 1 2 + σ 2 2 ) X+Y\sim N(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2) X+Y∼N(μ1+μ2,σ12+σ22)
2. M = m a x ( X , Y ) , N = m i n ( X , Y ) M=max(X,Y),N=min(X,Y) M=max(X,Y),N=min(X,Y)
F
M
(
z
)
=
P
(
M
≤
z
)
=
P
(
X
≤
z
,
Y
≤
z
)
=
P
(
X
≤
z
)
P
(
Y
≤
z
)
=
F
X
(
z
)
F
Y
(
z
)
F_M(z)=P(M\leq z)=P(X\leq z,Y\leq z)=P(X\leq z)P(Y\leq z)=F_X(z)F_Y(z)
FM(z)=P(M≤z)=P(X≤z,Y≤z)=P(X≤z)P(Y≤z)=FX(z)FY(z)
F
N
(
z
)
=
P
(
N
≤
z
)
=
1
−
P
(
N
>
z
)
=
1
−
P
(
X
>
z
,
Y
>
z
)
=
1
−
P
(
X
>
z
)
P
(
Y
>
z
)
=
1
−
(
1
−
P
(
X
≤
z
)
)
(
1
−
P
(
Y
≤
z
)
)
=
1
−
(
1
−
F
X
(
z
)
)
(
1
−
F
Y
(
z
)
)
F_N(z)=P(N\leq z)=1-P(N>z)=1-P(X>z,Y>z)=1-P(X>z)P(Y>z)=1-(1-P(X\leq z))(1-P(Y\leq z))=1-(1-F_X(z))(1-F_Y(z))
FN(z)=P(N≤z)=1−P(N>z)=1−P(X>z,Y>z)=1−P(X>z)P(Y>z)=1−(1−P(X≤z))(1−P(Y≤z))=1−(1−FX(z))(1−FY(z))
例
【例3】
X
Y
XY
XY独立,
X
:
[
0
,
1
]
X:[0,1]
X:[0,1]上的均匀分布,
Y
:
λ
=
3
Y:\lambda=3
Y:λ=3的指数分布,求
M
=
m
a
x
(
X
,
Y
)
,
N
=
m
i
n
(
X
,
Y
)
M=max(X,Y),N=min(X,Y)
M=max(X,Y),N=min(X,Y)
解:
f
X
(
x
)
=
{
1
0
≤
x
≤
1
0
e
l
s
e
f_X(x)=\begin{cases} 1 & 0\leq x\leq 1\\ 0 & else \end{cases}
fX(x)={100≤x≤1else
f
Y
(
y
)
=
{
3
e
−
3
y
y
>
0
0
y
≤
0
f_Y(y)=\begin{cases} 3e^{-3y} & y>0\\ 0 & y\leq0 \end{cases}
fY(y)={3e−3y0y>0y≤0
F
X
(
x
)
=
{
0
x
<
0
x
0
≤
x
<
1
1
x
≥
1
F_X(x)=\begin{cases} 0 & x<0\\ x & 0\leq x<1\\ 1 & x\geq1 \end{cases}
FX(x)=⎩⎪⎨⎪⎧0x1x<00≤x<1x≥1
F
Y
(
y
)
=
{
1
−
e
−
3
y
y
>
0
0
y
≤
0
F_Y(y)=\begin{cases} 1-e^{-3y} & y>0\\ 0 & y\leq0 \end{cases}
FY(y)={1−e−3y0y>0y≤0
因此,有:
M
=
m
a
x
(
X
,
Y
)
M=max(X,Y)
M=max(X,Y)
F
M
(
z
)
=
{
0
z
<
0
z
(
1
−
e
−
3
z
)
0
≤
z
<
1
1
−
e
−
3
z
z
≥
1
F_M(z)=\begin{cases} 0 & z<0\\ z(1-e^{-3z}) & 0\leq z<1\\ 1-e^{-3z} & z\geq 1 \end{cases}
FM(z)=⎩⎪⎨⎪⎧0z(1−e−3z)1−e−3zz<00≤z<1z≥1
F
M
(
z
)
=
{
0
z
<
0
1
−
e
−
3
z
+
3
z
e
−
3
z
0
≤
z
<
1
3
e
−
3
z
z
≥
1
F_M(z)=\begin{cases} 0 & z<0\\ 1-e^{-3z}+3ze^{-3z} & 0\leq z<1\\ 3e^{-3z} & z\geq 1 \end{cases}
FM(z)=⎩⎪⎨⎪⎧01−e−3z+3ze−3z3e−3zz<00≤z<1z≥1
N
=
m
i
n
(
X
,
Y
)
N=min(X,Y)
N=min(X,Y)
F
N
(
z
)
=
{
0
z
<
0
1
−
(
1
−
z
)
e
−
3
z
0
≤
z
<
1
1
z
≥
1
F_N(z)=\begin{cases} 0 & z<0\\ 1-(1-z)e^{-3z} & 0\leq z<1\\ 1 & z\geq 1 \end{cases}
FN(z)=⎩⎪⎨⎪⎧01−(1−z)e−3z1z<00≤z<1z≥1
F
N
(
z
)
=
{
4
e
−
3
z
−
3
z
e
−
3
z
0
≤
z
<
1
0
e
l
s
e
F_N(z)=\begin{cases} 4e^{-3z}-3ze^{-3z} & 0\leq z<1\\ 0 & else \end{cases}
FN(z)={4e−3z−3ze−3z00≤z<1else