方差的计算(总体方差与样本方差)

方差是数据集中的各个数据与其均值之间差值的平方的平均值。方差的计算公式如下:

对于总体数据(即所有数据):

σ 2 = 1 N ∑ i = 1 N ( x i − μ ) 2 \sigma^2 = \frac{1}{N} \sum_{i=1}^N (x_i - \mu)^2 σ2=N1i=1N(xiμ)2

其中:

  • σ 2 是总体方差。 \sigma^2是总体方差。 σ2是总体方差。
  • N 是数据的总个数。 N是数据的总个数。 N是数据的总个数。
  • x i 是第 i 个数据点。 x_i 是第 i 个数据点。 xi是第i个数据点。
  • μ 是数据的均值,即 \mu 是数据的均值,即 μ是数据的均值,即 μ = 1 N ∑ i = 1 N x i \mu = \frac{1}{N} \sum_{i=1}^N x_i μ=N1i=1Nxi

对于样本数据(即从总体中抽取的部分数据):

s 2 = 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 s2=n11i=1n(xixˉ)2

其中:

  • s 2 是样本方差。 s^2 是样本方差。 s2是样本方差。
  • n 是样本数据的个数。 n 是样本数据的个数。 n是样本数据的个数。
  • x i 是第 i 个样本数据点。 x_i 是第 i 个样本数据点。 xi是第i个样本数据点。
  • x ˉ 是样本数据的均值, \bar{x} 是样本数据的均值, xˉ是样本数据的均值, x ˉ = 1 n ∑ i = 1 n x i \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i xˉ=n1i=1nxi

总结起来,方差的公式可以概括为:

总体方差:

σ 2 = 1 N ∑ i = 1 N ( x i − μ ) 2 \sigma^2 = \frac{1}{N} \sum_{i=1}^N (x_i - \mu)^2 σ2=N1i=1N(xiμ)2

样本方差:

s 2 = 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 s2=n11i=1n(xixˉ)2

注意:样本方差的分母用 ( n-1 ) 而不是 ( n ),这是因为在计算样本均值时已经用掉了一个自由度(即数据点中有一个点是确定的)。使用 ( n-1 ) 可以调整这个偏差,使得样本方差更准确地反映总体方差。这种调整称为“无偏估计”,它确保在大量重复抽样的情况下,样本方差的平均值与总体方差相等。简单来说, ( n-1 ) 让我们的估计更加准确、公正。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值