1.3 向量的数量积与向量积(不做要求)

第三节 向量的数量积与向量积(向量积考纲不作要求)

数量积的概念及运算

定义: 给定两个向量 α , β , \alpha,\beta, α,β它们的数量积为: α . β = ∣ α ∣ ∣ β ∣ cos ⁡ φ \alpha . \beta=| \alpha || \beta| \cos \varphi α.β=α∣∣βcosφ

φ \varphi φ是两个向量的夹角。

由定义可有:

注: P r j u α = ∣ α ∣ cos ⁡ φ Prju \alpha = |\alpha|\cos\varphi Prj=αcosφ

  1. α . β = ∣ α ∣ P r j α β = ∣ β ∣ P r j β α \alpha.\beta = |\alpha|Prj_\alpha \beta = |\beta|Prj_\beta \alpha α.β=αPrjαβ=βPrjβα
  2. α = β , α . β = α 2 = ∣ α ∣ 2 \alpha = \beta,\alpha.\beta = \alpha^2 = |\alpha|^2 α=β,α.β=α2=α2
  3. α ⊥ β , < = > φ = π 2 , α . β = 0 \alpha \bot \beta, <=> \varphi = \frac{\pi}{2},\alpha.\beta = 0 αβ,<=>φ=2π,α.β=0

数量级的运算律:

交换律: α . β = β . α \alpha.\beta = \beta.\alpha α.β=β.α

分配律: ( α + β ) . γ = α . γ + β . γ (\alpha + \beta).\gamma = \alpha.\gamma+ \beta.\gamma (α+β).γ=α.γ+β.γ

结合律: α . λ + β . λ = ( α + β ) . λ \alpha.\lambda + \beta.\lambda = (\alpha + \beta).\lambda α.λ+β.λ=(α+β).λ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值