跨时期横截面的混合–潘登同学的计量经济学笔记
文章目录
跨时期横截面的混合包含两种
- 一种是独立混合横截面:可以简单理解为将两个时间点的横截面放到一起(一般是政策分析)
- 另一种是面板数据:这种数据是跟踪同一组样本,在不同时点得到的;如果我们想收集面板数据,我们要在不同时间追踪相同的一些人,家庭,企业或者城市等
独立横截面的混合
使用混合横截面的一个理由是: 加大样本容量,把不同时间点从同一总体中抽取的多个随机样本混合起来使用,可以获取更精密的估计量和更具功效的检验统计量;
所以需要注意的是: 仅当因变量和某些自变量保持着不随着时间而变化的关系时,混合才是有用的
典型地说,总体在不同时期有不同的分布,我们可以通过包含时间的虚拟变量来使得截距不同来解决这一问题。
例子1:不同时期的妇女生育率


在该例子中,我们增加了年度的虚拟变量,相当于改变了截距项,但是可能系数的解释也会随着时间的改变而不同,下面看一个交互作用的例子
例子2: 教育回报和工资中性别差异的变化


在该例子中,除了对交互项的分析外,我们还应该注意到一点,对数工资能把平减因子弄到截距项里面; 其次,如果将所有自变量与虚拟变量交互就相当与做了两次估计方程
跨时结构性变化的邹至庄检验
与之前检验两组数据在多元回归中是否有差别一样(之前用的例子是男女组别的估计方程),我们可以将这种检验用在两个不同时期;
- S S R p SSR_{p} SSRp:混合估计的残差平方和
- S S R u r SSR_{ur} SSRur:对两个时期分别估计而得到的两个SSR之和
F = S S R p − S S R u r S S R u r ⋅ n − 2 ( k + 1 ) k F = \frac{SSR_{p}-SSR_{ur}}{SSR_{ur}} \cdot \frac{n-2(k+1)}{k} F=SSRurSSRp−SSRur⋅kn−2(k+1)
原假设:两个时期的方程没有差别
因为邹至庄检验本质上是F检验,其实与直接对含有虚拟变量的那些项做F检验与上面的结果一致
推广 更一般地,该检验可以用于检验T个时期是否有显著差异
- S S R u r = S S R 1 + S S R 2 + … + S S R T SSR_{ur} = SSR_1 + SSR_2 + \ldots + SSR_T SSRur=SSR1+SSR2+…+SSRT: 对T个时期中的每个时期都做一个回归,并将每个回归的残差平方和加起来
- S S R p SSR_{p} SSRp:混合估计的残差平方和
F = S S R p − S S R u r S S R u r ⋅ n − T ( k + 1 ) ( T − 1 ) k F = \frac{SSR_{p}-SSR_{ur}}{SSR_{ur}} \cdot \frac{n-T(k+1)}{(T-1)k} F=SSRurSSRp−SSRur⋅(T−1)kn−T(k+1)
原假设:T个时期的方程都没有差别
政策分析的一般做法
以下是一个政策分析的例子



所以可以将上例抽象为以下方法;当某个外生事件(常常是政府的政策改变),影响了个人、家庭或者企业等的运行环境的时候,便产生了自然实验。一个自然实验通常有一个不受政策变化影响的对照组和一个被认为受政策变化影响的处理组(这里的对照组、处理组表示的是核心解释变量的不同,例如上例的是否在三英里内)
令 d 2 d_2 d2为虚拟变量(指示政策改变前后), d T dT dT表示核心解释变量(处理组为1,否则为0)
y = β 0 + δ 0 d 2 + β 1 d T + δ 1 d 2 d T + 其 他 因 素 y = \beta_0 + \delta_0d_2 + \beta_1dT + \delta_1d_2dT + 其他因素 y=β0+δ0d2+β1

本文探讨了跨时期横截面混合模型在计量经济学中的应用,涉及独立混合和面板数据,举例说明了妇女生育率、教育回报性别差异变化的分析,以及邹至庄检验在结构变化中的应用。政策分析部分介绍了自然实验的设计与估计,包括失业率、犯罪率和企业项目效果的评估。讨论了一阶差分模型的局限性和核心解释变量与时期交互的重要性。
最低0.47元/天 解锁文章
3439

被折叠的 条评论
为什么被折叠?



