蓝桥杯----分组

问题描述
蓝桥小学要进行弹弹球游戏,二年级一班总共有 n 个同学,要求分成 k 个队伍,由于弹弹球游戏要求队员的身高差不能太大,小蓝是班长,他对这个事情正在发愁,他想问你,如何最小化每个组之间的身高极差。

具体的,假设分成了 k 个组,第 i 组最高的人身高是 Hxi​ ,最矮的是 Hni​,你被要求最小化表达式: max⁡1≤i≤k max​(Hxi​−Hni​) 。直白来说,你需要将 n 个元素分出 k 组,使得最大的极差尽可能小。你需要输出这个最小化后的值。

输入格式
第一行输入两个整数 n,k 。

第二行输入 n 个整数:h1​,h2​,h3​...hn​ ,分别代表 n 个人的身高。

输出格式
输出一个整数,代表最小值。

样例输入
5 3
8 4 3 6 9
样例输出
1
 

评测数据规模
数据范围:

1\leqslant k \leq n\leqslant 10^{5}

1 \leq h_{i}\leqslant 10^{9}

题解:逆向思维,直接去处理答案

方法一:枚举

在这里,去枚举答案,答案的最大值是height[n-1]-height[0],如果有小得不能再小了,就是最后的答案。可以利用贪心,从0开始尝试。

import java.util.*;
// 1:无需package
// 2: 类名必须Main, 不可修改

public class Main {
    public static void main(String[] args) {
        // TODO Auto-generated method stub
        Scanner scan = new Scanner(System.in);
        int n = scan.nextInt();
        int k = scan.nextInt();
        scan.nextLine();
        int[] height = new int[n];
        for (int i = 0; i < n; i++) {
            height[i] = scan.nextInt();
        }
        Arrays.sort(height);
        // 3 4 6 8 9

        // 在这里,去枚举答案,答案的最大值是height[n-1]-height[0],如果有小得不能再小了,就是最后的答案,可以利用贪心。从0开始尝试
        int count = 0;
        int current = 0;
        for (int i = 0; i <= height[n - 1] - height[0]; i++) {
            count = 0;
            current = height[0];
            for (int j = 0; j < n - 1; j++) {
                if (height[j + 1] - current > i) {
                    count++;
                    current = height[j + 1];
                }
            }
            count++;
            //System.out.println(count);
            if (count <= k) {
                count = i;
                break;
            }
        }
        System.out.println(count);

        scan.close();
    }
}

在这里,可以有个小加速,在count到k就可以跳出循环了。这是没有加个小加速的。

有个小加速的。

但是都过不了测试用例。

方法二:二分法

在这里不用去枚举,直接用二分法去找答案。

import java.util.*;
// 1:无需package
// 2: 类名必须Main, 不可修改

public class Main {
  public static int way0(int[] height, int n, int k) {
		int l = 0;
		int r = height[n - 1] - height[0];
		int count = 0;
		int current = 0;
		int max = Integer.MAX_VALUE;

		while (l <= r) {
			int mid = (l + r) / 2;
			count = 0;
			current = height[0];
			for (int j = 0; j < n - 1; j++) {
				if (height[j + 1] - current > mid) {
					count++;
					if (count >= k)
						break;
					current = height[j + 1];
				}
			}
			count++;
			// System.out.println(count);

			if (count <= k) {
				r = mid - 1;
				max =Math.min(max, mid);
			} else {
				l = mid + 1;
			}
			// System.out.println(l+":"+r+":"+mid);
		}
		return max;
	}

    public static void main(String[] args) {
		// TODO Auto-generated method stub
		Scanner scan = new Scanner(System.in);
		int n = scan.nextInt();
		int k = scan.nextInt();
		scan.nextLine();
		int[] height = new int[n];
		for (int i = 0; i < n; i++) {
			height[i] = scan.nextInt();
		}
		Arrays.sort(height);
		// 3 4 6 8 9

		// 在这里,去枚举答案,答案的最大值是height[n-1]-height[0],如果有小得不能再小了,就是最后的答案,可以利用贪心。从0开始尝试
		System.out.println(way0(height,n,k));

		scan.close();
	}
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值