找到数组里消失的数字(鸽笼原理)

本文介绍了如何应用鸽笼原理(抽屉原理)解决寻找数组中消失数字的问题。通过创建哈希数组进行查重是常规方法,但文章提出了一种巧妙的解法,有助于深入理解鸽笼原理。数组元素范围从1到n,对应索引0到n-1,通过这种方式可以巧妙地找出缺失的数字。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概念

鸽笼原理 (抽屉原理) “如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只或2只以上鸽子。”这个简单的事实就是著名的鸽笼原理,在我们国家更多地称为抽屉原理。

问题分析:看到这道题,常规做法就是创建一个的哈希数组来存储1~n的数,然后遍历查重找到缺少的数字。

下面介绍一个很巧妙的解法,也能帮助你更好的理解鸽箱原理。

数组里面数的范围是1~n,那么对应的索引范围就是0~n-1。

我们以示例一解释 [4,3,2,7,8,2,3,1] 

解题思路:我们可以利用索引和n的关系,第一个数字是4,我们就将数组的第四个同时也是下标为3的数据改成负数,遍历过程中如果遇到重复的元素,我们可以用abs()方法来保证一直为负数,最后剩下为正数的下标+1就是我们要找的数组。
      [4,3,2,7,8,2,3,1] 初始数据
     
      [4,3,2,-7,8,2,3,1] 第一个数据 4 出现,将下标 3 的数据改为负数。
      
      [4,3,-2,-7,8,2,3,1] 第二个数据 3 出现,将下标 2 的数据改为负数。

      [4,-3,-2,-7,8,2,3,1]

      [4,-3,-2,-7,8,2,-3,1]

      [4,-3,-2,-7,8,2,-3,-1]

      [4,-3,-2,-7,8,2,-3,-1]

      [4,-3,-2,-7,8,2,-3,-1]

      [-4,-3,-2,-7,8,2,-3,-1]
遍历完毕&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值