协同过滤推荐算法-Java电商商品推荐案例

协同过滤推荐算法-Java电商商品推荐案例

import java.util.*;

// 商品类
class Item {
    int id;
    String name;

    public Item(int id, String name) {
        this.id = id;
        this.name = name;
    }
}

// 用户类
class User {
    int id;
    String name;
    Map<Item, Integer> ratings; // 用户对商品的评分

    public User(int id, String name) {
        this.id = id;
        this.name = name;
        this.ratings = new HashMap<>();
    }

    // 为商品添加评分
    public void addRating(Item item, int rating) {
        ratings.put(item, rating);
    }

    // 获取用户对商品的评分
    public Integer getRating(Item item) {
        return ratings.get(item);
    }
}

// 商品推荐器类
class ItemRecommender {
    List<User> users;

    public ItemRecommender(List<User> users) {
        this.users = users;
    }

    // 基于用户的协同过滤推荐算法
    public List<Item> recommendItems(User user) {
        Map<Item, Double> scores = new HashMap<>();
        Map<Item, Integer> frequency = new HashMap<>();

        // 计算用户之间的相似度
        for (User otherUser : users) {
            if (otherUser != user) {
                for (Item item : otherUser.ratings.keySet()) {
                    if (!user.ratings.containsKey(item)) {
                        int rating = otherUser.getRating(item);
                        scores.put(item, scores.getOrDefault(item, 0.0) + rating);
                        frequency.put(item, frequency.getOrDefault(item, 0) + 1);
                    }
                }
            }
        }

        // 计算推荐得分
        Map<Item, Double> recommendations = new HashMap<>();
        for (Item item : scores.keySet()) {
            double score = scores.get(item);
            int freq = frequency.get(item);
            recommendations.put(item, score / freq);
        }

        // 排序推荐结果
        List<Map.Entry<Item, Double>> sortedRecommendations = new ArrayList<>(recommendations.entrySet());
        sortedRecommendations.sort((a, b) -> Double.compare(b.getValue(), a.getValue()));

        // 返回推荐商品
        List<Item> recommendedItems = new ArrayList<>();
        for (Map.Entry<Item, Double> entry : sortedRecommendations) {
            recommendedItems.add(entry.getKey());
        }

        return recommendedItems;
    }
}

public class CollaborativeFiltering {
    public static void main(String[] args) {
        // 创建用户和商品
        User user1 = new User(1, "Alice");
        User user2 = new User(2, "Bob");
        Item item1 = new Item(1, "手机");
        Item item2 = new Item(2, "平板电脑");
        Item item3 = new Item(3, "耳机");

        // 用户对商品的评分
        user1.addRating(item1, 5);
        user1.addRating(item2, 4);
        user2.addRating(item1, 4);
        user2.addRating(item3, 5);

        // 构建用户列表
        List<User> users = new ArrayList<>();
        users.add(user1);
        users.add(user2);

        // 创建商品推荐器
        ItemRecommender recommender = new ItemRecommender(users);

        // 对用户进行商品推荐
        List<Item> recommendedItems = recommender.recommendItems(user1);

        // 输出推荐结果
        System.out.println("为用户 " + user1.name + " 推荐的商品是:");
        for (Item item : recommendedItems) {
            System.out.println(item.name);
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值