YOLO训练过程日志解析

训练进展:随着训练的进行,损失值会逐渐减小,表明模型在不断学习和改进

YOLO训练过程日志解析

Epoch gpu_mem box_loss obj_loss cls_loss total_loss precision recall mAP_0.5 mAP_0.5:0.95
1/20 6.23G 0.0534 0.0327 0.0087 0.0948 0.810 0.745 0.688 0.457
2/20 6.23G 0.0458 0.0285 0.0072 0.0815 0.825 0.765 0.702 0.470


Epoch: 当前的训练轮次。

gpu_mem: GPU内存使用情况。

box_loss: 边界框回归损失。

obj_loss: 目标存在损失。

cls_loss: 分类损失。

total_loss: 总损失。

precision: 精度指标。

recall: 召回率指标。

mAP_0.5: mAP@0.5指标(IoU阈值为0.5的平均精度)。

mAP_0.5:0.95: mAP@0.5:0.95指标(IoU阈值从0.5到0.95的平均精度)。


一、解析如下:

验证损失和精度指标是在每个epoch结束时计算的,用于评估模型在验证集上的表现:

  • 验证损失(Validation Loss):应该随着训练进行而降低。较低的验证损失通常表明模型对验证集的拟合较好。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值