训练进展:随着训练的进行,损失值会逐渐减小,表明模型在不断学习和改进。
YOLO训练过程日志解析
Epoch gpu_mem box_loss obj_loss cls_loss total_loss precision recall mAP_0.5 mAP_0.5:0.95
1/20 6.23G 0.0534 0.0327 0.0087 0.0948 0.810 0.745 0.688 0.457
2/20 6.23G 0.0458 0.0285 0.0072 0.0815 0.825 0.765 0.702 0.470
Epoch: 当前的训练轮次。
gpu_mem: GPU内存使用情况。
box_loss: 边界框回归损失。
obj_loss: 目标存在损失。
cls_loss: 分类损失。
total_loss: 总损失。
precision: 精度指标。
recall: 召回率指标。
mAP_0.5: mAP@0.5指标(IoU阈值为0.5的平均精度)。
mAP_0.5:0.95: mAP@0.5:0.95指标(IoU阈值从0.5到0.95的平均精度)。
一、解析如下:
验证损失和精度指标是在每个epoch结束时计算的,用于评估模型在验证集上的表现:
- 验证损失(Validation Loss):应该随着训练进行而降低。较低的验证损失通常表明模型对验证集的拟合较好。