25. 剪绳子

剪绳子

给你一根长度为 n
绳子,请把绳子剪成 m 段(m、n都是整数,2≤n≤58 并且 m≥2)。
每段的绳子的长度记为 k[1]、k[2]、……、k[m]。

k[1]k[2]…k[m] 可能的最大乘积是多少?

例如当绳子的长度是 8 时,我们把它剪成长度分别为 2、3、3 的三段,此时得到最大的乘积 18

样例
输入:8

输出:18

思路 :

此题 经典小学数奥题目
分成的段长度 如果为 5 那么可以分成 2 3 乘积为 6 比5大
如果为4 可以分成两段 2 * 2 乘积为 4 结果不变
而 长度比5 大的数字 一定可以分成多段 让其乘积比本身的数字大
即有思路 摸上数字3 如果结果为1 就 res =4 再循环-3 并相乘
如果结果为2 就res =2 再循环-3 并相乘

代码

class Solution {
public:
    int maxProductAfterCutting(int n) {
             if (n <= 3) return 1 * (n - 1);
        int res = 1;
        if (n % 3 == 1) res = 4, n -= 4;
        else if (n % 3 == 2) res = 2, n -= 2;
        while (n) res *= 3, n -= 3;
        return res;
    }
};
在C++中,绳子问题是一个经典的动态规划问题。问题描述为:给定一根长度为n的绳子,要求将其成m段(m>1),每段绳子的长度记为k, k, ..., k[m-1],请问如何绳子使得各段绳子的乘积最大? 解决这个问题的一种常见方法是使用动态规划。具体步骤如下: 1. 定义一个数组dp,其中dp[i]表示长度为i的绳子成若干段后各段绳子长度乘积的最大值。 2. 初始化dp数组,dp和dp都为0,因为长度为0和1的绳子无法断。 3. 从长度为2开始遍历到n,对于每个长度i,计算dp[i]的值。 - 遍历j从1到i-1,表示第一段绳子的长度,可以取值范围为1到i-1。 - 计算第一段绳子长度为j时,剩余绳子的长度为i-j。 - 计算当前情况下的乘积,即j * dp[i-j]。 - 更新dp[i]的值为所有情况中乘积最大的值。 4. 最终dp[n]即为所求的结果,表示长度为n的绳子成若干段后各段绳子长度乘积的最大值。 下面是绳子问题的C++代码示例: ```cpp #include <iostream> #include <vector> using namespace std; int cutRope(int n) { if (n <= 1) { return 0; } vector<int> dp(n + 1, 0); for (int i = 2; i <= n; i++) { for (int j = 1; j < i; j++) { dp[i] = max(dp[i], max(j * (i - j), j * dp[i - j])); } } return dp[n]; } int main() { int n = 8; int result = cutRope(n); cout << "将长度为" << n << "的绳子成若干段后各段绳子长度乘积的最大值为:" << result << endl; return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值