剪绳子
给你一根长度为 n
绳子,请把绳子剪成 m 段(m、n都是整数,2≤n≤58 并且 m≥2)。
每段的绳子的长度记为 k[1]、k[2]、……、k[m]。
k[1]k[2]…k[m] 可能的最大乘积是多少?
例如当绳子的长度是 8 时,我们把它剪成长度分别为 2、3、3 的三段,此时得到最大的乘积 18
。
样例
输入:8
输出:18
思路 :
此题 经典小学数奥题目
分成的段长度 如果为 5 那么可以分成 2 3 乘积为 6 比5大
如果为4 可以分成两段 2 * 2 乘积为 4 结果不变
而 长度比5 大的数字 一定可以分成多段 让其乘积比本身的数字大
即有思路 摸上数字3 如果结果为1 就 res =4 再循环-3 并相乘
如果结果为2 就res =2 再循环-3 并相乘
代码
class Solution {
public:
int maxProductAfterCutting(int n) {
if (n <= 3) return 1 * (n - 1);
int res = 1;
if (n % 3 == 1) res = 4, n -= 4;
else if (n % 3 == 2) res = 2, n -= 2;
while (n) res *= 3, n -= 3;
return res;
}
};