实验4-1-10 兔子繁衍问题

在这里插入图片描述

 🌏个人博客:尹蓝锐的博客

在这里插入图片描述

希望文章能够给到初学的你一些启发~ 如果觉得文章对你有帮助的话,点赞 + 关注+ 收藏支持一下笔者吧~

1、题目要求:

一对兔子,从出生后第3个月起每个月都生一对兔子。小兔子长到第3个月后每个月又生一对兔子。假如兔子都不死,请问第1个月出生的一对兔子,至少需要繁衍到第几个月时兔子总数才可以达到N对?

2、输入输出格式与样例:

输入格式:

输入在一行中给出一个不超过10000的正整数N。

输出格式:

在一行中输出兔子总数达到N最少需要的月数。

输入样例:

30

输出样例:

9

3、程序:

#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
int main()
{
	int big = 1, mid = 0, small = 1, month = 3, n, sum = 0;
	scanf("%d", &n);
	while (sum < n)
	{
		big = big + mid;
		mid = small;
		small = big;
		sum = big + mid + small;
		month++;
	}
	printf("%d", month);
}

4、运行效果:

  如果我的博客能给您带来启发,请不吝点赞、评论和收藏,也欢迎您关注我的博客。

  如果你喜欢这篇文章,别忘了留下你的感想和建议,让我知道你的想法。同时,也请继续关注我的博客,我们不见不散!

  最后,愿每一位读到这里的你,都能拥有一个充实而美好的每一天。不管世界怎样变化,保持学习,保持热爱,保持对生活的好奇心,我们的故事,还在继续……

在这里插入图片描述

-27 兔子繁衍问题是一个经典的数学问题,它描述了一个兔子繁殖的模型,其中一对兔子每个可以生出一对新的兔子。问题中提到了兔子的数量和每个繁殖情况,需要求解出多少个兔子的数量会增加到原来的两倍。 解决这个问题的一种方法是使用数学公式,即等比数列的求和公式。假设初始时有一对兔子每个新生一对兔子,则兔子的数量可以表示为: 兔子的数量 = 初始兔子数量 + (初始兔子数量 - 1) + (初始兔子数量 - 2) + ... + (初始兔子数量 - n + 1) 其中 n 是份数,即需要求出多少个兔子的数量会增加到原来的两倍。 根据等比数列的求和公式,兔子的数量为初始兔子数量乘以(1 - (1/2)^(n))(这是一个递增的数列,且越来越接近于原点),最后得到: 初始兔子数量 × (1 - (1/2)^n) > 初始兔子数量的两倍 现在来解答这个问题,假设初始时有一对兔子,那么我们想要求解的是 n = 3 时的情况。将 n = 3 代入上述公式中,可以得到: 初始兔子数量 × (1 - (1/2)^3) > 初始兔子数量的两倍 解这个不等式可以得到: 初始兔子数量 > 约 3.67 个兔子的数量会增加到原来的两倍 因此,如果一对兔子每个新生一对新的兔子,那么大约需要 3.67 个兔子的数量才会增加到原来的两倍。需要注意的是,这个结果只是一个近似值,实际情况可能会因为各种因素而有所不同。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尹蓝锐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值