粒子群,模拟退火,遗传——MATLAB代码

本文深入介绍了三种优化算法:粒子群优化算法、模拟退火算法和遗传算法。粒子群算法通过群体智能寻找目标函数的最大值;模拟退火算法在约束条件下求解最小值问题;遗传算法以二值编码方式寻找函数最大值。这些算法在解决复杂优化问题时展现出强大的能力。
摘要由CSDN通过智能技术生成

粒子群优化算法

粒子群算法基本步骤
1 找出待优化的目标函数
2 设定种群规模大小(不会设置可直接采用下方代码的)
3 替换掉下方公式即可

%% 初始化种群  
f= @(x)x .* sin(x) .* cos(2 * x) - 2 * x .* sin(3 * x); % 函数表达式    % 求这个函数的最大值  
figure(1);ezplot(f,[0,0.01,20]);  
N = 50;                         % 初始种群个数  
d = 1;                          % 空间维数  
ger = 100;                      % 最大迭代次数       
limit = [0, 20];                % 设置位置参数限制  
vlimit = [-1, 1];               % 设置速度限制  
w = 0.8;                        % 惯性权重  
c1 = 0.5;                       % 自我学习因子  
c2 = 0.5;                       % 群体学习因子   
for i = 1:d  
    x = limit(i, 1) + (limit(i, 2) - limit(i, 1)) * rand(N, d);%初始种群的位置  
end  
v = rand(N, d);                  % 初始种群的速度  
xm = x;                          % 每个个体的历史最佳位置  
ym = zeros(1, d);                % 种群的历史最佳位置  
fxm = zeros(N, 1);               % 每个个体的历史最佳适应度  
fym = -inf;                      % 种群历史最佳适应度  
hold on  
plot(xm, f(xm), 'ro');title('初始状态图');  
figure(2)  
%% 群体更新  
iter = 1;  
record = zeros(ger, 1);          % 记录器  
while iter <= ger  
     fx = f(x) ; % 个体当前适应度     
     for i = 1:N        
        if fxm(i) < fx(i)  
            fxm(i) = fx(i);     % 更新个体历史最佳适应度  
            xm(i,:) = x(i,:);   % 更新个体历史最佳位置  
        end   
     end  
if fym < max(fxm)  
        [fym, nmax] = max(fxm);   % 更新群体历史最佳适应度  
        ym = xm(nmax, :);      % 更新群体历史最佳位置  
 end  
    v = v * w + c1 * rand * (xm - x) + c2 * rand * (repmat(ym, N, 1) - x);% 速度更新  
    % 边界速度处理  
    v(v > vlimit(2)) = vlimit(2);  
    v(v < vlimit(1)) = vlimit(1);  
    x = x + v;% 位置更新  
    % 边界位置处理  
    x(x > limit(2)) = limit(2);  
    x(x < limit(1)) = limit(1);  
    record(iter) = fym;%最大值记录  
     x0 = 0 : 0.01 : 20;  
     plot(x0, f(x0), 'b-', x, f(x), 'ro');title('状态位置变化')  
    pause(0.1)  
    iter = iter+1;  
end  
figure(3);plot(record);title('收敛过程')  
x0 = 0 : 0.01 : 20;  
figure(4);plot(x0, f(x0), 'b-', x, f(x), 'ro');title('最终状态位置')  
disp(['最大值:',num2str(fym)]);  
disp(['变量取值:',num2str(ym)]);  

模拟退火算法

%生成初始解,求目标函数f(x)=x1^2+x2^2+8在x1^2-x2>0;-x1-x2^2+2=0约束下的最小值问题  
sol_new2=1;%(1)解空间(初始解)  
sol_new1=2-sol_new2^2;  
sol_current1 = sol_new1;   
sol_best1 = sol_new1;  
sol_current2 = sol_new2;   
sol_best2 = sol_new2;  
E_current = inf;  
E_best = inf;  
  
rand('state',sum(clock)); %初始化随机数发生器  
t=90; %初始温度  
tf=89.9; %结束温度  
a = 0.99; %温度下降比例  
  
while t>=tf%(7)结束条件  
    for r=1:1000 %退火次数  
          
        %产生随机扰动(3)新解的产生  
        sol_new2=sol_new2+rand*0.2;  
        sol_new1=2-sol_new2^2;  
          
        %检查是否满足约束  
        if sol_new1^2-sol_new2>=0 && -sol_new1-sol_new2^2+2==0 && sol_new1>=0 &&sol_new2>=0  
        else  
            sol_new2=rand*2;  
            sol_new1=2-sol_new2^2;  
            continue;  
        end  
          
        %退火过程  
        E_new=sol_new1^2+sol_new2^2+8;%(2)目标函数  
        if E_new<E_current%(5)接受准则  
                E_current=E_new;  
                sol_current1=sol_new1;  
                sol_current2=sol_new2;  
                if E_new<E_best  
                    %把冷却过程中最好的解保存下来  
                    E_best=E_new;  
                    sol_best1=sol_new1;  
                    sol_best2=sol_new2;  
                end  
        else  
                if rand<exp(-(E_new-E_current)/t)%(4)代价函数差  
                    E_current=E_new;  
                    sol_current1=sol_new1;  
                    sol_current2=sol_new2;  
                else  
                    sol_new1=sol_current1;  
                    sol_new2=sol_current2;  
                end  
        end  
        plot(r,E_best,'*')  
        hold on  
    end  
    t=t*a;%(6)降温  
end  
  
disp('最优解为:')  
disp(sol_best1)  
disp(sol_best2)  
disp('目标表达式的最小值等于:')  
disp(E_best)  

遗传算法

% 求下列函数的最大值 %
% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %
% 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01 。 %
% 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其中 b 是 [0,1023] 中的一个二值数。 %
% %
%--------------------------------------------------------------------------------------------------------------%
%--------------------------------------------------------------------------------------------------------------%
% 编程
%-----------------------------------------------
% 2.8 主程序
%遗传算法主程序
%Name:genmain05.m
function genmain()
tic;
clear
clf
popsize=20; %群体大小
chromlength=10; %字符串长度(个体长度)
pc=0.6; %交叉概率
pm=0.001; %变异概率

pop=initpop(popsize,chromlength); %随机产生初始群体
for i=1:20 %20为迭代次数
[objvalue]=calobjvalue(pop); %计算目标函数
fitvalue=calfitvalue(objvalue); %计算群体中每个个体的适应度
[newpop]=selection(pop,fitvalue); %复制
[newpop]=crossover(pop,pc); %交叉
[newpop]=mutation(pop,pc); %变异
[bestindividual,bestfit]=best(pop,fitvalue); %求出群体中适应值最大的个体及其适应值
y(i)=max(bestfit);
n(i)=i;
pop5=bestindividual;
x(i)=decodechrom(pop5,1,chromlength)*10/1023;
pop=newpop;
end

fplot('10*sin(5*x)+7*cos(4*x)',[0 10])
hold on
plot(x,y,'r*')
hold off

[z index]=max(y); %计算最大值及其位置
x5=x(index)%计算最大值对应的x值
y=z
toc

% 2.1初始化(编码)
% initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),
% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。
%遗传算法子程序
%Name: initpop.m
%初始化

function pop=initpop(popsize,chromlength) 
pop=round(rand(popsize,chromlength)) % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵,
% roud对矩阵的每个单元进行圆整。这样产生的初始种群。

% 2.2 计算目标函数值
% 2.2.1 将二进制数转化为十进制数(1)
%遗传算法子程序
%Name: decodebinary.m
%产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制
function pop2=decodebinary(pop)
[px,py]=size(pop); %求pop行和列数
for i=1:py
pop1(:,i)=2.^(py-i).*pop(:,i);
end
pop2=sum(pop1,2); %求pop1的每行之和

% 2.2.2 将二进制编码转化为十进制数(2)
% decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置
% (对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),
% 参数1ength表示所截取的长度(本例为10)。
%遗传算法子程序
%Name: decodechrom.m
%将二进制编码转换成十进制
function pop2=decodechrom(pop,spoint,length)
pop1=pop(:,spoint:spoint+length-1);
pop2=decodebinary(pop1);

% 2.2.3 计算目标函数值
% calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。
%遗传算法子程序
%Name: calobjvalue.m
%实现目标函数的计算
function [objvalue]=calobjvalue(pop)
temp1=decodechrom(pop,1,10); %将pop每行转化成十进制数
x=temp1*10/1023; %将二值域 中的数转化为变量域 的数
objvalue=10*sin(5*x)+7*cos(4*x); %计算目标函数值

% 2.3 计算个体的适应值
%遗传算法子程序
%Name:calfitvalue.m
%计算个体的适应值
function fitvalue=calfitvalue(objvalue)
global Cmin;
Cmin=0;
[px,py]=size(objvalue);
for i=1:px
if objvalue(i)+Cmin>0
temp=Cmin+objvalue(i);
else
temp=0.0;
end
fitvalue(i)=temp;
end
fitvalue=fitvalue';

% 2.4 选择复制
% 选择或复制操作是决定哪些个体可以进入下一代。程序中采用赌轮盘选择法选择,这种方法较易实现。
% 根据方程 pi=fi/∑fi=fi/fsum ,选择步骤:
% 1) 在第 t 代,由(1)式计算 fsum 和 pi 
% 2) 产生 {0,1} 的随机数 rand( .),求 s=rand( .)*fsum
% 3) 求 ∑fi≥s 中最小的 k ,则第 k 个个体被选中
% 4) 进行 N 次2)、3)操作,得到 N 个个体,成为第 t=t+1 代种群
%遗传算法子程序
%Name: selection.m
%选择复制
function [newpop]=selection(pop,fitvalue)
totalfit=sum(fitvalue); %求适应值之和
fitvalue=fitvalue/totalfit; %单个个体被选择的概率
fitvalue=cumsum(fitvalue); %如 fitvalue=[1 2 3 4],则 cumsum(fitvalue)=[1 3 6 10] 
[px,py]=size(pop);
ms=sort(rand(px,1)); %从小到大排列
fitin=1;
newin=1;
while newin<=px
if(ms(newin))<fitvalue(fitin)
newpop(newin)=pop(fitin);
newin=newin+1;
else
fitin=fitin+1;
end
end

% 2.5 交叉
% 交叉(crossover),群体中的每个个体之间都以一定的概率 pc 交叉,即两个个体从各自字符串的某一位置
% (一般是随机确定)开始互相交换,这类似生物进化过程中的基因分裂与重组。例如,假设2个父代个体x1,x2为:
% x1=0100110
% x2=1010001
% 从每个个体的第3位开始交叉,交又后得到2个新的子代个体y1,y2分别为:
% y1=0100001
% y2=1010110
% 这样2个子代个体就分别具有了2个父代个体的某些特征。利用交又我们有可能由父代个体在子代组合成具有更高适合度的个体。
% 事实上交又是遗传算法区别于其它传统优化方法的主要特点之一。
%遗传算法子程序
%Name: crossover.m
%交叉
function [newpop]=crossover(pop,pc)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:2:px-1
if(rand<pc)
cpoint=round(rand*py);
newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];
newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];
else
newpop(i,:)=pop(i);
newpop(i+1,:)=pop(i+1);
end
end

% 2.6 变异
% 变异(mutation),基因的突变普遍存在于生物的进化过程中。变异是指父代中的每个个体的每一位都以概率 pm 翻转,即由“1”变为“0”,
% 或由“0”变为“1”。遗传算法的变异特性可以使求解过程随机地搜索到解可能存在的整个空间,因此可以在一定程度上求得全局最优解。
%遗传算法子程序
%Name: mutation.m
%变异
function [newpop]=mutation(pop,pm)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:px
if(rand<pm)
mpoint=round(rand*py);
if mpoint<=0
mpoint=1;
end
newpop(i)=pop(i);
if any(newpop(i,mpoint))==0
newpop(i,mpoint)=1;
else
newpop(i,mpoint)=0;
end
else
newpop(i)=pop(i);
end
end

% 2.7 求出群体中最大得适应值及其个体
%遗传算法子程序
%Name: best.m
%求出群体中适应值最大的值
function [bestindividual,bestfit]=best(pop,fitvalue)
[px,py]=size(pop);
bestindividual=pop(1,:);
bestfit=fitvalue(1);
for i=2:px
if fitvalue(i)>bestfit
bestindividual=pop(i,:);
bestfit=fitvalue(i);
end
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

35℃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值