关于tvm的学习记录

TVM是一个基于编译优化的推理框架,旨在解决算法模型在各种硬件上的兼容性和性能问题。它通过IR模块( Relay, TIR)和Runtime Module实现模型的编译与运行。TVM的算法包括Frontend、Relay Passes、调度等,其中AutoTVM通过强化学习自动搜索最佳调度配置。其特色是算子计算与调度的分离,以及提供了AutoTVM以优化特定硬件的性能。" 108819136,9926573,递归算法应用:青蛙跳台阶与汉诺塔问题解析,"['递归', '算法', '数学问题', '编程挑战', '逻辑思维']
摘要由CSDN通过智能技术生成

一、TVM概念

基于编译优化思想的推理框架,为了算法模型在所有可能部署的设备上都达到良好性能。

、tvm解决的问题

1、兼容性问题

曾经出现了很多种编程语言,有很多种硬件,历史上最开始也是一种语言对应一种硬件,从而造成编译器的维护困难与爆炸。

 

而编译器后面解决了这个问题,其具体解决办法是这样的:抽象出编译器前端,编译器中端,编译器后端等概念,引入IR (Intermediate Representation)

 

而对于现在多种训练框架训练的算法模型与硬件对应关系混乱,可得出以下架构:

 

2、性能优化

通过模型优化,让部署到硬件上的机器学习模型有良好性能。

三、TVM的基本架构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值