决策树C4.5算法复现(根据ID3算法改进)

本文介绍了C4.5决策树算法,它相对于ID3的改进在于能处理连续值和缺失值。通过二分法处理连续特征,C4.5在分类任务中展现出更强的灵活性。
摘要由CSDN通过智能技术生成
			决策树C4.5算法复现(基于数据集win分类)

C4.5 对比 ID3
优势:①ID3仅能处理离散值,C4.5可以处理连续值(采用二分法选择最佳分类标准)
劣势:①:C4.5可以处理缺失值,ID3无法处理缺失值

本文主要生成整棵决策树,关于剪枝处理和对缺失值的处理以后我会慢慢补充`

from scipy import *
from math import log
import operator
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd

def load_dataSet(train_size):
    """
    主要划分了训练集和测试集
    主要使用的是pandas来读取exel表并且用sklearn库来划分测试集和训练集
    """
    fpath = r'd:win.xls'
    object = pd.read_excel(fpath)
    dataSet = object.iloc[0:179, 1:14]
    trans_dataSet = dataSet.values.tolist()
    #X = np.array(m1)
    #k1 = object.iloc[0:150, 1:5]
    #k2 = k1.values.tolist()
    list1 = []
    for i in trans_dataSet:
        list1.append(i)
    data_size = len(list1)
    test_data_size = data_size - train_size
    train_data, test_data = train_test_split(list1, test_size=test_data_size / data_size)
    return train_data, test_data


def Ent(data_set):
    """
    本处计算信息熵
    """
    num_entries = len(data_set)
    label_number = {
   }
    for entry in data_set:
        label = entry[-1]
        if label in label_number.keys():
            label_number[label] += 1
        else:
            label_number[label] = 1
    info_D = 0.0
    for label in label_number.keys():
        prob = float(label_number[label]) / num_entries
        info_D -= prob * log(prob, 2)
    return info_D


def split_data_set(data_set, index, value, continuo, part=0):
    """
    本处主要是对连续值和离散值的处理
    """
    rest_data_set = []
    if continuo ==False:
        for entry in data_set:
            if entry[index] == value:
                reduced_entry = entry[:index]
                reduced_entry.extend(entry[index + 1:])  # 划分后去除数据中第index列的值
                rest_data_set.append(reduced_entry)
    else:
        for entry in data_set:
            if part == 0 and float(entry[index]) <= value:  # 求划分点左侧的数据集
                reduced_entry = entry[:index]
                reduced_entry.extend(entry[index + 1:])  # 划分后去除数据中第index列的值
                rest_data_set
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朱比特

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值