第七次作业

import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# torch.manual_seed(1)    
# np.random.seed(1)
# Hyper Parameters
BATCH_SIZE = 64
LR_G = 0.0001  
LR_D = 0.0001  
N_IDEAS = 5  
ART_COMPONENTS = 15  
PAINT_POINTS = np.vstack([np.linspace(-1, 1, ART_COMPONENTS) for _ in range(BATCH_SIZE)])

# show our beautiful painting range
# plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='upper bound')
# plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + 0, c='#FF9359', lw=3, label='lower bound')
# plt.legend(loc='upper right')
# plt.show()


def artist_works():  
    a = np.random.uniform(1, 2, size=BATCH_SIZE)[:, np.newaxis]
    paintings = a * np.power(PAINT_POINTS, 2) + (a - 1)
    paintings = torch.from_numpy(paintings).float()
    return paintings

G = nn.Sequential( 
    nn.Linear(N_IDEAS, 128),  
    nn.ReLU(),
    nn.Linear(128, ART_COMPONENTS), 
)

D = nn.Sequential(  # Discriminator
    nn.Linear(ART_COMPONENTS, 128),  
    nn.ReLU(),
    nn.Linear(128, 1),
    nn.Sigmoid(), 
)

opt_D = torch.optim.Adam(D.parameters(), lr=LR_D)
opt_G = torch.optim.Adam(G.parameters(), lr=LR_G)
plt.ion()  
for step in range(10000):
    artist_paintings = artist_works()  
    G_ideas = torch.randn(BATCH_SIZE, N_IDEAS, requires_grad=True)  
    G_paintings = G(G_ideas)  
    prob_artist1 = D(G_paintings) 
    G_loss = torch.mean(torch.log(1. - prob_artist1))
    opt_G.zero_grad()
    G_loss.backward()
    opt_G.step()
    prob_artist0 = D(artist_paintings)  
    prob_artist1 = D(G_paintings.detach()) 
    D_loss = - torch.mean(torch.log(prob_artist0) + torch.log(1. - prob_artist1))
    opt_D.zero_grad()
    D_loss.backward(retain_graph=True)  
    opt_D.step()
    if step % 50 == 0:  
        plt.cla()
        plt.plot(PAINT_POINTS[0], G_paintings.data.numpy()[0], c='#4AD631', lw=3, label='Generated painting', )
        plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='upper bound')
        plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + 0, c='#FF9359', lw=3, label='lower bound')
        plt.text(-.5, 2.3, 'D accuracy=%.2f (0.5 for D to converge)' % prob_artist0.data.numpy().mean(),
                 fontdict={'size': 13})
        plt.text(-.5, 2, 'D score= %.2f (-1.38 for G to converge)' % -D_loss.data.numpy(), fontdict={'size': 13})
        plt.ylim((0, 3));
        plt.legend(loc='upper right', fontsize=10);
        plt.draw();
        plt.pause(0.01)

plt.ioff()
plt.show()

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值