一、制作单类检测的coco128数据集(以人为例)
1、首先下载coco128数据集,解压后可看到该数据集文件存放位置适合使用yolov5进行训练。coco数据集可在下面链接下载。
https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip

2、假定我们要制作只检测人的数据集,打开一张图片及其标签。(标签在pycharm中打开,比较明显,直接用文本打开时数据没有分行,看起来很杂乱。)


标签中包含五个参量。第一个参量代表类别,其余参量分别为x,y,w,h;对应在含义可以通过上图理解。
通常制作数据集的方法是使用LabelImg进行标注,这里选择直接对labels中的数据进行更改,只保留需要的类以及图片。是一种讨巧的方法!

这篇博客介绍了如何制作适用于yolov5的单类(人)COCO128数据集,并详细阐述了训练过程。首先从COCO128数据集中筛选出含人的图片,然后使用yolov5框架进行训练,调整配置文件并指定训练参数。训练完成后,提供了不同epochs的权重供下载和使用。
最低0.47元/天 解锁文章
445

被折叠的 条评论
为什么被折叠?



