第P2周:CIFAR10彩色图片识别

一、前期准备

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device
device(type='cpu')

2.导入数据

使用dataset下载CIFAR10数据集,并划分好训练集和测试集

使用dataloader加载数据,并设置好基本的batch_size

train_ds = torchvision.datasets.CIFAR10('data',
                                       train = True,
                                       transform=torchvision.transforms.ToTensor(),
                                       download=True)

test_ds = torchvision.datasets.CIFAR10('data',
                                      train = False,
                                      transform=torchvision.transforms.ToTensor(),
                                      download=True)
Files already downloaded and verified
Files already downloaded and verified
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_ds,
                                      batch_size=batch_size,
                                      shuffle=True)

test_dl = torch.utils.data.DataLoader(test_ds,
                                     batch_size=batch_size)
## 取一个批次查看数据格式
## 数据shape为:[batch_size, channel, height, weight]
## 其中batch_size自己设定,channel,height和weight分别是图片的通道数,高度和宽度。

imgs, labels = next(iter(train_dl))
imgs.shape
torch.Size([32, 3, 32, 32])

3.数据可视化

import numpy as np

## 指定图片大小,图像大小为20宽,5高的绘图(单位为英尺inch)
plt.figure(figsize=(20,5))
for i, imgs in enumerate(imgs[:20]):
    ## 进行轴变换
    npimg = imgs.numpy().transpose((1,2,0))
    ## 将整个figure分成2行10列,绘制第i+1个子图
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')

在这里插入图片描述

二、构建简单的CNN网络

对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

import torch.nn.functional as F

num_classes = 10 ##图片的类别数

class Model(nn.Module):
     def __init__(self):
        super().__init__()
        ## 特征提取网络
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)   ## 第一层卷积,卷积核大小为3*3 in_channels=3, out_channels==64
        self.pool1 = nn.MaxPool2d(kernel_size=2)       ## 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3)  ## 第二层卷积,池化核大小为3*3
        self.pool2 = nn.MaxPool2d(kernel_size=2)
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3) ## 第三层卷积,卷积核大小为3*3
        self.pool3 = nn.MaxPool2d(kernel_size=2)
        
        ## 分类网络
        self.fc1 = nn.Linear(512, 256)
        self.fc2 = nn.Linear(256, num_classes)
        
    # 前向传播
     def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))
        x = self.pool2(F.relu(self.conv2(x)))
        x = self.pool3(F.relu(self.conv3(x)))
        
        x = torch.flatten(x, start_dim=1)
        
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        
        return x
        
        

加载并打印模型

from torchinfo import summary

## 将模型转移到cpu中

model = Model().to(device)

summary(model)
=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
Model                                    --
├─Conv2d: 1-1                            1,792
├─MaxPool2d: 1-2                         --
├─Conv2d: 1-3                            36,928
├─MaxPool2d: 1-4                         --
├─Conv2d: 1-5                            73,856
├─MaxPool2d: 1-6                         --
├─Linear: 1-7                            131,328
├─Linear: 1-8                            2,570
=================================================================
Total params: 246,474
Trainable params: 246,474
Non-trainable params: 0
=================================================================

三、训练模型

1.设置超参数

loss_fn = nn.CrossEntropyLoss() ## 创建损失函数
learn_rate = 1e-2   ## 学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate)

2.编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  ## 训练集大小,一共60000张图片
    num_batches = len(dataloader)   ## 批次数目,1875(60000/32)
    
    train_loss, train_acc = 0, 0 ## 初始化训练损失和正确率
    
    for X, y in dataloader:   ## 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        ## 计算预测误差
        pred = model(X)      ## 网络输出
        loss = loss_fn(pred, y)  ## 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        ## 反向传播
        optimizer.zero_grad() ## grad属性归零
        loss.backward()       ## 反向传播
        optimizer.step()      ## 每一步自动更新
        
        ## 记录acc与loss
        train_acc += (pred.argmax(1) == y ).type(torch.float).sum().item()
        train_loss += loss.item()
        
    train_acc /= size
    train_loss /= num_batches
    
    return train_acc, train_loss

3.编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)  ## 测试集大小
    num_batches = len(dataloader)   ## 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc =0, 0

    ## 当不进行训练时,梯度停止更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
        
            ## 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)
        
            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
            
    test_acc /= size
    test_loss /= num_batches
    
    return test_acc, test_loss

4.正式训练

epochs = 10
train_loss = []
train_acc = []
test_loss = []
test_acc = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
    
    
Epoch: 1, Train_acc:13.1%, Train_loss:2.291, Test_acc:14.7%, Test_loss:2.248
Epoch: 2, Train_acc:25.8%, Train_loss:2.032, Test_acc:30.3%, Test_loss:1.904
Epoch: 3, Train_acc:34.2%, Train_loss:1.800, Test_acc:38.1%, Test_loss:1.704
Epoch: 4, Train_acc:40.8%, Train_loss:1.629, Test_acc:43.0%, Test_loss:1.550
Epoch: 5, Train_acc:44.5%, Train_loss:1.529, Test_acc:43.1%, Test_loss:1.577
Epoch: 6, Train_acc:47.9%, Train_loss:1.444, Test_acc:46.1%, Test_loss:1.466
Epoch: 7, Train_acc:50.9%, Train_loss:1.369, Test_acc:51.5%, Test_loss:1.364
Epoch: 8, Train_acc:53.6%, Train_loss:1.300, Test_acc:53.9%, Test_loss:1.294
Epoch: 9, Train_acc:56.0%, Train_loss:1.238, Test_acc:56.1%, Test_loss:1.245
Epoch:10, Train_acc:58.3%, Train_loss:1.179, Test_acc:59.0%, Test_loss:1.162
Done

四、结果可视化

import matplotlib.pyplot as plt
## 隐藏警告
import warnings
warnings.filterwarnings("ignore")  ## 忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']   ## 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False     ## 用来正常显示负号
plt.rcParams['figure.dpi'] = 100               ## 分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and validation Loss')
plt.show()

在这里插入图片描述
总结:
可以在数据可视化的步骤中使用transpose((1, 2, 0))将轴的顺序由(C, H, W)转换为(H, W, C)从而使得数据格式更加易于处理。
详细了解了torch.nn.Conv2d()(卷积层),torch.nn.Linear()(全联接层),torch.nn.MaxPool2d()(池化层)等函数的用法,同时详细了解了卷积层和池化层的相关计算包括卷积层的整体运算过程,输出shape和运算量,池化层的输出shape。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值