第T1周:实现mnist手写数字识别

一、前期准备
1.设置GPU(如果使用的是CPU可以忽略这步)

import torch 
import torch.nn as nn 
import matplotlib.pyplot as plt 
import torchvision

## 设置硬件设备,如果有GPU则使用,没有则使用cpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cpu')

2.导入数据

train_ds = torchvision.datasets.MNIST('data',
                                     train=True,
                                     transform=torchvision.transforms.ToTensor(),
                                     download=True)

test_ds = torchvision.datasets.MNIST('data',
                                     train=False,
                                     transform=torchvision.transforms.ToTensor(),
                                     download=True)

torch.utils.data.DataLoader

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_ds,
                                      batch_size=batch_size,
                                      shuffle=True)
##train_dl: PyTorch数据加载器(DataLoader),用于加载训练数据集。通常数据加载器会将数据集分成小批量(batches)进行处理

test_dl = torch.utils.data.DataLoader(test_ds,
                                      batch_size=batch_size)

##取一个批次查看数据格式
##数据的shape为:[batch_size, channel, height, weight]
##其中batch_size为自己设定,channel是图片的通道数,height和weight分别是高度和宽度

imgs, labels = next(iter(train_dl))
imgs.shape

## iter(train_dl)将数据加载器转换为一个迭代器(iterator),使得我们可以使用Python中的next()函数来逐个访问数据加载器中的元素
## next()函数用于迭代器的下一个元素。在这里,他被用来获取train_dl中的下一个批量数据。
## imgs, labels = ...这行代码是Python的解构赋值语法。它将从next()函数返回的元素中提取两个变量:imgs和labels
## imgs变量将包含一个批量的图像数据,而labels变量将包含相应的标签数据。这些图像和标签是从训练数据集中提取的。
torch.Size([32, 1, 28, 28])

3.数据可视化

import numpy as np

plt.figure(figsize=(20,5))
for i, imgs in enumerate(imgs[:20]):
    ## 维度缩减
    ## squeeze()函数用于从矩阵shape中去除维度为1的轴。可以让数据更加紧凑,减少不必要的维度。(如果原始矩阵中没有长度为1的轴,调用squeeze函数不会对矩阵的shape产生任何影响)
    npimg = np.squeeze(imgs.numpy())
    ## 将整个figure分成两行十列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')
    
    

在这里插入图片描述

二、构建简单的CNN网络

对于一般的CNN网络,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

nn.Conv2d为卷积层,用于提取图片的特征,传入参数为输入channel,输出channel,池化核大小
nn.MaxPool2d为池化层,进行向下采样,用更高层的抽象表示图像特征,传入参数为池化核大小
nn.ReLU为激活函数,使模型可以拟合非线性数据
nn.Liner为全连接层,可以起到特征提取器的作用,最后一层的全连接层也可以认为是输出层,传入参数为输入特征数字
和输出特征和输出特征数(输入特征由特征提取网络计算得到,如果不会计算可以直接运行网络,报错中会提示输入特征数
的大小,下方网络中第一个全连接层的输入特征数为1600)
nn.Sequential可以按构造顺序连接网络,在初始化阶段就设定好网络结构,不需要在向前传播中再写一遍

import torch.nn.functional as F

num_classes = 10 # 图片的类别数

class Model(nn.Module):
     def __init__(self):
        super().__init__()
        # 特征提取网络
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3)  # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(2)                  # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3) # 第二层卷积,卷积核大小为3*3
        self.pool2 = nn.MaxPool2d(2)
        
        #分类网络
        self.fc1 = nn.Linear(1600, 64)
        self.fc2 = nn.Linear(64, num_classes)
    # 向前传播
     def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))
        x = self.pool2(F.relu(self.conv2(x)))
        
        x = torch.flatten(x, start_dim=1)
        
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        
        return x

打印并加载模型

from torchinfo import summary
# 将模型转移到cpu中
model = Model().to(device)

summary(model)
=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
Model                                    --
├─Conv2d: 1-1                            320
├─MaxPool2d: 1-2                         --
├─Conv2d: 1-3                            18,496
├─MaxPool2d: 1-4                         --
├─Linear: 1-5                            102,464
├─Linear: 1-6                            650
=================================================================
Total params: 121,930
Trainable params: 121,930
Non-trainable params: 0
=================================================================

三、训练模型

1.设置超参数

loss_fn    = nn.CrossEntropyLoss()   # 创建损失函数
learn_rate = 1e-2                   # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

2.编写训练函数

1.optimizer.zero_grad()
函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的提督设置为0,即上一次的梯度记录被清空。

2.loss.backward()

3.optimizer.step()

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    
    train_loss, train_acc = 0, 0
    
    for X, y in dataloader:                ## 遍历加载器中每一个批次数据
        X, y = X.to(device), y.to(device)  ## 将数据和标签移动到计算机设备(CPU或GPU),以便加速计算
        
        ## 计算预测误差(前向传播)
        pred = model(X)
        loss = loss_fn(pred, y)
        
        ## 反向传播
        optimizer.zero_grad()   ## grad属性归零 每次反向传播之前,将优化器的梯度清零,以免累加上一个批次的提督
        loss.backward()         ## 反向传播计算梯度
        optimizer.step()        ## 每一步自动更新
        
        # 表示计算预测正确的样本数量,并将其作为一个标量值返回。这通常用于评估分类模型的准确率或计算分类问题的正确预测数量。
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        ## pred.argmax(1) 返回数组 pred 在第一个轴(即行)上最大值所在的索引。这通常用于多类分类问题中,其中 pred 是一个包含预测概率的二维数组,每行表示一个样本的预测概率分布。
        ## (pred.argmax(1) == y)是一个布尔值,其中等号是否成立代表对应样本的预测是否正确(True 表示正确,False 表示错误)。
        ## .type(torch.float)是将布尔数组的数据类型转换为浮点数类型,即将 True 转换为 1.0,将 False 转换为 0.0。
        ## .sum()是对数组中的元素求和,计算出预测正确的样本数量。
        ## .item()将求和结果转换为标量值,以便在 Python 中使用或打印。
        train_loss += loss.item()
        
    train_acc  /= size          ## 计算训练数据集上的平均准确度
    train_loss /= num_batches   ## 计算每个批次的平均损失
    
    return train_acc, train_loss

3.编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):
    size = len(dataloader.dataset) ## 测试集的大小,一共10000张图片
    num_batches = len(dataloader)  ## 批次数目, 313(10000/32=312.5,向上去取整)
    
    test_loss, test_acc = 0, 0
    
    ## 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device),target.to(device)
            
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
            
    test_acc /= size
    test_loss /= num_batches
    
    return test_acc, test_loss

4.正式训练

epochs = 5
train_loss = []
train_acc = []
test_loss = []
test_acc = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print ('Done')

Epoch: 1, Train_acc:94.1%, Train_loss:0.194, Test_acc:96.2%, Test_loss:0.126
Epoch: 2, Train_acc:96.4%, Train_loss:0.119, Test_acc:96.8%, Test_loss:0.097
Epoch: 3, Train_acc:97.2%, Train_loss:0.091, Test_acc:97.9%, Test_loss:0.070
Epoch: 4, Train_acc:97.6%, Train_loss:0.076, Test_acc:98.1%, Test_loss:0.061
Epoch: 5, Train_acc:98.0%, Train_loss:0.066, Test_acc:98.3%, Test_loss:0.057
Done

四、结果可视化

import matplotlib.pyplot as plt
# 隐藏警告
import warnings  
warnings.filterwarnings("ignore")    ## 忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  ## 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False    ## 用来正常显示负号
plt.rcParams['figure.dpi'] = 100              ##分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accurary')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

总结:

本周做了一个简单的CNN项目(实现手写数字识别),主要了解了CNN项目的相关步骤。
前期的准备工作中,可以使用dataset下载数据集,划分训练集和测试集;使用dataloader加载数据,设置batch_size;在数据可视化的步骤中可以使用squeeze()函数除去矩阵中维度为1的轴,这样可以让数据更加紧凑,减少不必要的维度。
对于构建CNN网络,一般的的CNN网络都是由提取网络和分类网络构成,特征网络用于提取图片特征,分类网络用于将图片进行分类。
在编写训练函数时需要注意使用optimizer.zero_grad():将优化器中的梯度清零,以免累加上一个批次的梯度。
在编写测试时,由于不进行训练,可以通过with torch.no_grad():停止梯度更新,节省计算内存消耗。
通过正式训练以及结果可视化,可以通过图像了解到我们所训练的模型性能如何。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值