第P8周:YOLOv5-C3模块实现

一、前期准备

1.设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision 
from torchvision import transforms, datasets
import os, PIL, pathlib, warnings

warnings.filterwarnings("ignore")      ## 忽略警告信息

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
    device(type='cpu')

2.导入数据

import os,PIL,random,pathlib

data_dir = './weather_photos/'
data_dir = pathlib.Path(data_dir)

data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("/")[1] for path in data_paths]
classeNames
    ['cloudy', 'rain', '.DS_Store', 'shine', 'sunrise']
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),        ## 将图片resize成统一尺寸
    ## transforms.RandomHorrizontalFlip() ## 随机水平翻转
    transforms.ToTensor(),                ## 将PIL Image或numpy.ndarray 转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(                 ## 标准化处理-->转换为标准正态分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])        ## 其中mean=[0.485, 0.456, 0.406]与std=[0.229, 0.224, 0.225]从数据集中随机抽样计算得到
])

test_transforms = transforms.Compose([
    transforms.Resize([224, 224]),
    transforms.ToTensor(),
    transforms.Normalize(
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])
])

total_data = datasets.ImageFolder("./weather_photos/", transform = train_transforms)
total_data
    Dataset ImageFolder
        Number of datapoints: 1125
        Root location: ./weather_photos/
        StandardTransform
    Transform: Compose(
                   Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)
                   ToTensor()
                   Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
               )
total_data.class_to_idx
    {'cloudy': 0, 'rain': 1, 'shine': 2, 'sunrise': 3}

3.划分数据集

train_size = int(0.8*len(total_data))
test_size = len(total_data) - train_size 
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
    (<torch.utils.data.dataset.Subset at 0x1103e4490>,
     <torch.utils.data.dataset.Subset at 0x1103e5870>)
batch_size = 4

train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)

test_dl = torch.utils.data.DataLoader(test_dataset,
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=1)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]:", X.shape)
    print("Shape of y:", y.shape, y.dtype)
    break
    Shape of X [N, C, H, W]: torch.Size([4, 3, 224, 224])
    Shape of y: torch.Size([4]) torch.int64

二、搭建包含C3模块的模型

在这里插入图片描述

import torch.nn.functional as F

def autopad(k, p=None):        ## kernel, padding
    ## Pad to 'same'
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]     ## auto-pad
    return p

class Conv(nn.Module):
    ## Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):   ## ch_in,ch_out,kernel,stride,padding,groups
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Indentity()) 
        ## 如果act是一个nn.Module实例,则直接使用传入的激活函数。如果act参数为False或者未识别的值,则使用 nn.Indentity()即不做任何激活
    def forward(self, x):
        return self.act(self.bn(self.conv(x)))
    
class Bottleneck(nn.Module):
    ## standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):   ## ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_=int(c2 * e)   ## hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2
        
    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
        ## 如果 self.add 为 True: 执行 x + self.cv2(self.cv1(x))
        
class C3(nn.Module):
    ## CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): ## ch_in, ch_out, number(Bottleneck 模块的重复次数), shortcut(), groups, expansion
        super().__init__()
        c_=int(c2 * e)  ## hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)   ## act = FReLU(c2) 这一步通常是为了融合两个分支的输出,并恢复原始的输出通道数
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
        ## self.m 是一个由多个 Bottleneck 组成的模块
        ## n是Bottleneck模块的重复次数,意味着这个部分会重复添加n个Bottleneck层。
        ## 每个 Bottleneck 层的输入和输出通道数都是 c_,并且可以选择是否使用残差连接(由shortcut参数决定)。
        
    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
        ## torch.cat((...), dim=1)将self.m(self.cv1(x))和self.cv2(x)的输出在通道维度上(即第 1 维)进行拼接,得到一个新的张量。
        
        
class model_K(nn.Module):   ## 输入 -> 卷积层 -> C3 模块 -> 展平 -> 全连接层 -> 输出
    def __init__(self):
        super(model_K, self).__init__()
        
        ## 卷积模块
        self.Conv = Conv(3, 32, 3, 2) ## ch_in,ch_out,kernel,stride
        
        ## C3模块1
        self.C3_1 = C3(32, 64, 3, 2)  ## ch_in,ch_out,number(Bottleneck 模块的重复次数),shortcut()(这里的2代表True)
        
        ## 全连接网络层,用于分类
        self.classifier = nn.Sequential(
            nn.Linear(in_features=802816, out_features=100),
            nn.ReLU(),
            nn.Linear(in_features=100, out_features=4)
        )
        
    def forward(self, x):
        x = self.Conv(x)
        x = self.C3_1(x)
        x = torch.flatten(x, start_dim=1) ## start_dim=1 指定了从第 1 维(即通道维度)开始展平。
                                          ## x.shape=[N, C, W, H] 例如:x.shape=(8, 32, 7, 7)那么经过torch.flatten(x, start_dim=1)变为(8, 32*7*7),即 (8, 1568)
        x = self.classifier(x)
        
        return x
   
    
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = model_K().to(device)
model
        
        
        
    Using cpu device





    model_K(
      (Conv): Conv(
        (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (act): SiLU()
      )
      (C3_1): C3(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv3): Conv(
          (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (m): Sequential(
          (0): Bottleneck(
            (cv1): Conv(
              (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (act): SiLU()
            )
            (cv2): Conv(
              (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (act): SiLU()
            )
          )
          (1): Bottleneck(
            (cv1): Conv(
              (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (act): SiLU()
            )
            (cv2): Conv(
              (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (act): SiLU()
            )
          )
          (2): Bottleneck(
            (cv1): Conv(
              (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (act): SiLU()
            )
            (cv2): Conv(
              (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (act): SiLU()
            )
          )
        )
      )
      (classifier): Sequential(
        (0): Linear(in_features=802816, out_features=100, bias=True)
        (1): ReLU()
        (2): Linear(in_features=100, out_features=4, bias=True)
      )
    )

2.查看模型详情

## 统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model, (3,224,224))
    ----------------------------------------------------------------
            Layer (type)               Output Shape         Param #
    ================================================================
                Conv2d-1         [-1, 32, 112, 112]             864
           BatchNorm2d-2         [-1, 32, 112, 112]              64
                  SiLU-3         [-1, 32, 112, 112]               0
                  Conv-4         [-1, 32, 112, 112]               0
                Conv2d-5         [-1, 32, 112, 112]           1,024
           BatchNorm2d-6         [-1, 32, 112, 112]              64
                  SiLU-7         [-1, 32, 112, 112]               0
                  Conv-8         [-1, 32, 112, 112]               0
                Conv2d-9         [-1, 32, 112, 112]           1,024
          BatchNorm2d-10         [-1, 32, 112, 112]              64
                 SiLU-11         [-1, 32, 112, 112]               0
                 Conv-12         [-1, 32, 112, 112]               0
               Conv2d-13         [-1, 32, 112, 112]           9,216
          BatchNorm2d-14         [-1, 32, 112, 112]              64
                 SiLU-15         [-1, 32, 112, 112]               0
                 Conv-16         [-1, 32, 112, 112]               0
           Bottleneck-17         [-1, 32, 112, 112]               0
               Conv2d-18         [-1, 32, 112, 112]           1,024
          BatchNorm2d-19         [-1, 32, 112, 112]              64
                 SiLU-20         [-1, 32, 112, 112]               0
                 Conv-21         [-1, 32, 112, 112]               0
               Conv2d-22         [-1, 32, 112, 112]           9,216
          BatchNorm2d-23         [-1, 32, 112, 112]              64
                 SiLU-24         [-1, 32, 112, 112]               0
                 Conv-25         [-1, 32, 112, 112]               0
           Bottleneck-26         [-1, 32, 112, 112]               0
               Conv2d-27         [-1, 32, 112, 112]           1,024
          BatchNorm2d-28         [-1, 32, 112, 112]              64
                 SiLU-29         [-1, 32, 112, 112]               0
                 Conv-30         [-1, 32, 112, 112]               0
               Conv2d-31         [-1, 32, 112, 112]           9,216
          BatchNorm2d-32         [-1, 32, 112, 112]              64
                 SiLU-33         [-1, 32, 112, 112]               0
                 Conv-34         [-1, 32, 112, 112]               0
           Bottleneck-35         [-1, 32, 112, 112]               0
               Conv2d-36         [-1, 32, 112, 112]           1,024
          BatchNorm2d-37         [-1, 32, 112, 112]              64
                 SiLU-38         [-1, 32, 112, 112]               0
                 Conv-39         [-1, 32, 112, 112]               0
               Conv2d-40         [-1, 64, 112, 112]           4,096
          BatchNorm2d-41         [-1, 64, 112, 112]             128
                 SiLU-42         [-1, 64, 112, 112]               0
                 Conv-43         [-1, 64, 112, 112]               0
                   C3-44         [-1, 64, 112, 112]               0
               Linear-45                  [-1, 100]      80,281,700
                 ReLU-46                  [-1, 100]               0
               Linear-47                    [-1, 4]             404
    ================================================================
    Total params: 80,320,536
    Trainable params: 80,320,536
    Non-trainable params: 0
    ----------------------------------------------------------------
    Input size (MB): 0.57
    Forward/backward pass size (MB): 150.06
    Params size (MB): 306.40
    Estimated Total Size (MB): 457.04
    ----------------------------------------------------------------

三、训练模型

1.编写训练函数

## 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)    ## 训练集的大小
    num_batches = len(dataloader)     ## 批次数目,(size/batch_size),向上取整
    
    
    train_loss, train_acc = 0, 0
    
    for X, y in dataloader:    ## 获取初始化训练损失和正确率
        X, y = X.to(device), y.to(device)
    
        ## 计算误差
        pred = model(X)            ## 网络输出
        loss = loss_fn(pred, y)    ## 计算误差
    
        ## 反向传播
        optimizer.zero_grad()      ## grad属性归零
        loss.backward()            ## 反向传播
        optimizer.step()           ## 每一步自动更新
    
    
         ## 记录acc与loss
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
    
    train_acc /= size
    train_loss /= num_batches
    
    return train_acc, train_loss

2.编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    
    test_acc, test_loss = 0, 0 
        
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            ## 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
            
    test_acc /= size
    test_loss /= num_batches
        
    return test_acc, test_loss        

3.正式训练

import copy

optimizer = torch.optim.Adam(model.parameters(), lr = 1e-4)
loss_fn = nn.CrossEntropyLoss()          ## 创建损失函数

epochs = 20 

train_loss = []
train_acc = []
test_loss = []
test_acc = []

best_acc = 0    ## 设置一个最佳准确率

for epoch in range(epochs):
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    ## 保存最佳模型
    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        best_model = copy.deepcopy(model)
        
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    ## 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss, lr))
    

## 保存模型参数
PATH = './best_model.pth'           ## 保存的参数文件名
torch.save(model.state_dict(), PATH)
          
print('Done')
    Epoch: 1, Train_acc:88.1%, Train_loss:0.542, Test_acc:84.0%, Test_loss:0.710, Lr:1.00E-04
    Epoch: 2, Train_acc:94.0%, Train_loss:0.289, Test_acc:83.1%, Test_loss:1.018, Lr:1.00E-04
    Epoch: 3, Train_acc:95.0%, Train_loss:0.193, Test_acc:86.2%, Test_loss:0.642, Lr:1.00E-04
    Epoch: 4, Train_acc:97.6%, Train_loss:0.094, Test_acc:89.8%, Test_loss:0.647, Lr:1.00E-04
    Epoch: 5, Train_acc:96.6%, Train_loss:0.183, Test_acc:85.8%, Test_loss:1.000, Lr:1.00E-04
    Epoch: 6, Train_acc:96.8%, Train_loss:0.122, Test_acc:82.7%, Test_loss:1.219, Lr:1.00E-04
    Epoch: 7, Train_acc:99.2%, Train_loss:0.048, Test_acc:87.6%, Test_loss:0.853, Lr:1.00E-04
    Epoch: 8, Train_acc:98.3%, Train_loss:0.088, Test_acc:78.7%, Test_loss:1.156, Lr:1.00E-04
    Epoch: 9, Train_acc:97.2%, Train_loss:0.128, Test_acc:85.8%, Test_loss:0.719, Lr:1.00E-04
    Epoch:10, Train_acc:98.7%, Train_loss:0.068, Test_acc:90.7%, Test_loss:0.527, Lr:1.00E-04
    Epoch:11, Train_acc:98.6%, Train_loss:0.037, Test_acc:82.7%, Test_loss:0.794, Lr:1.00E-04
    Epoch:12, Train_acc:98.9%, Train_loss:0.042, Test_acc:89.3%, Test_loss:0.578, Lr:1.00E-04
    Epoch:13, Train_acc:99.9%, Train_loss:0.004, Test_acc:90.2%, Test_loss:0.553, Lr:1.00E-04
    Epoch:14, Train_acc:99.9%, Train_loss:0.002, Test_acc:90.7%, Test_loss:0.483, Lr:1.00E-04
    Epoch:15, Train_acc:99.8%, Train_loss:0.009, Test_acc:89.8%, Test_loss:0.615, Lr:1.00E-04
    Epoch:16, Train_acc:99.8%, Train_loss:0.005, Test_acc:90.7%, Test_loss:0.520, Lr:1.00E-04
    Epoch:17, Train_acc:99.2%, Train_loss:0.031, Test_acc:85.3%, Test_loss:1.161, Lr:1.00E-04
    Epoch:18, Train_acc:97.1%, Train_loss:0.222, Test_acc:88.4%, Test_loss:0.805, Lr:1.00E-04
    Epoch:19, Train_acc:98.6%, Train_loss:0.049, Test_acc:88.9%, Test_loss:0.929, Lr:1.00E-04
    Epoch:20, Train_acc:98.9%, Train_loss:0.056, Test_acc:90.2%, Test_loss:0.703, Lr:1.00E-04
    Done

四、结果可视化

1.Loss与Accuracy图

import matplotlib.pyplot as plt
## 隐藏警告
warnings.filterwarnings("ignore")   ## 忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['figure.dpi'] = 100

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

2.模型评估

best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss
    (0.9066666666666666, 0.5267204757914918)
epoch_test_acc
    0.9066666666666666

五、总结:

本周学习了解了YOLOv5中的C3模块,通过代码深入了解了C3模块的结构:
在这里插入图片描述

  1. C3 模块
    • C3 模块是 YOLOv5 中用来替代标准残差块(Residual Block)的模块,它集成了多层 Bottleneck 结构,并通过 concat(拼接)操作将不同层的特征融合在一起。

  2. Bottleneck 子模块
    • Bottleneck 子模块内部包含了两个卷积层,并且有一个“shortcut”路径(残差路径)。
    • Bottleneck 模块通过将输入 input 先经过两个卷积层,然后将输出与输入相加(即 ADD),形成残差连接,帮助模型更好地训练深度网络。

  3. Concat
    • concat(拼接)操作是将多层的输出特征图沿通道维度拼接在一起,以丰富特征表达。

  4. ShortCut
    • Bottleneck 模块中的 shortcut 连接是直接将输入 input 传递到输出,并与经过卷积处理后的输出相加,这种结构有助于缓解梯度消失问题,类似于 ResNet 中的残差连接。

  • 6
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值