简单介绍
Eigen库是可以用在C++中进行一些线性代数、矩阵相关等数学运算的库,里面封装好了一些类,详细介绍还可以看下面官网,大致对标python里大名鼎鼎的numpy矩阵运算库(问就是平时用py用的多hhh,,手动/doge)
配置
首先到官网
https://eigen.tuxfamily.org/
上下载Eigen库的资料,下载完成后大概是这样的:
我们发现在图中还有一个"Eigen"文件夹,这个就是我们使用的include文件夹。
接下来,在VSCode里新建一个项目(VSCode新建C++工程步骤不会的话可以查阅网上,有很多资料,后面有时间笔者会更新整理),并将刚才提到的Eigen文件夹复制粘贴到项目目录下。
例如按照上图,我的Eigen文件夹路径为:
D:/Eigen/eigen-3.4.0/Eigen
下面是我VSCode C++工程结构:
- .vscode:VSCode里C++工程配置文件等
- Eigen:刚才复制过来的文件夹
- example1.cpp/test1.cpp/test1.exe:之前的一些代码例程+生成的可执行文件,自己用于测试Eigen包能否编译运行用的
- libstdc++ -6.dll:如果系统里安装了多个版本的C解释器(MinGW,CygWin一类),VSCode可能无法成功完成编译,为避免出现MinGW等解释器之间的冲突,可以到自己的MinGW里把libstdc+±6.dll复制到你的项目文件夹下避免这种冲突的发生。
测试
使用时必须包含头文件语句
#include <Eigen/Dense>
可以测试下面代码,如果编译运行没有问题就可以正常使用了
#include <iostream>
#include <Eigen/Dense>
#include <windows.h>
using namespace Eigen;
using namespace std;
int main()
{
MatrixXf a(4, 1);//必须要进行初始化
a = MatrixXf::Zero(4, 1);//初始化为0
cout << "初始化为0" << endl << a << endl;
a = MatrixXf::Ones(4, 1);//初始化为1,矩阵大小与初始化相关,因为是动态矩阵
cout << "初始化为1" << endl << a << endl;
a.setZero();//矩阵置零
a << 1, 2, 3, 4;//手动赋值
MatrixXf b(1, 4);
b.setRandom();//随机生成一个矩阵
MatrixXf c(3, 3);
c.setIdentity();
cout << "置单位矩阵:" << endl << c << endl;
c.setRandom();
MatrixXf d = c;
d = d.inverse();
cout << "矩阵c:" << endl << c << endl;
cout << "矩阵a:" << endl << a << endl;
cout << "矩阵b:" << b << endl;
cout << "访问a(0):" << endl << a(0) << endl;
cout << "矩阵相乘:" << endl << a*b << endl;
cout << "矩阵数乘:" << endl << 2 * a << endl;
cout << "矩阵c求逆d:" << endl << d << endl;
cout << "逆矩阵回乘:" << endl << d*c << endl;
cout << "逆矩阵d转置:" << endl << d.transpose() << endl;
Vector3d v(1, 2, 3);
Vector3d w(1, 0, 0);
cout << "向量相加:" << endl << v + w << endl;
getchar();
system("pause");
return 0;
}