一、 在windows或ubuntu下的Anaconda环境下练习创建虚拟环境,在虚拟环境下安装 jupyter 和 numpy,并运行jupyter
这里我把 python 3.8 和 anaconda 的安装教程贴出来,就不再重复了。
Python 3.8.7安装教程
Windows安装Anaconda使用教程
安装完毕后,在开始菜单中可以看到安装好的 Anaconda 及 Jupyter 、Spyder ,如果没有后两个,可以打开 Anaconda 进行安装。
配置虚拟环境
conda create -n exam1 python=3.7
其中 exam1 是虚拟环境的文件名,指定 python 版本 3.7
创建成功后如下图所示。
激活并进入 exam1 虚拟环境。
activate
conda activate exam1
分别执行下面的三条命令,安装 numpy、pandas、sklearn 包(务必安装这三个包,比较常用)。
pip install numpy -i "https://pypi.doubanio.com/simple/"
pip install pandas -i "https://pypi.doubanio.com/simple/"
pip install sklearn -i "https://pypi.doubanio.com/simple/"
至此,简单的虚拟环境就创建好了,如果需要什么包,就可以直接在虚拟环境中安装即可,配置简单。
最后,附带常用 conda 命令:
创建自己的虚拟环境
conda create -n python36 python=3.6
切换环境
activate learn
如果忘记了名称我们可以先用
conda env list
卸载环境
conda remove --name python36 --all
安装第三方包
conda install requests
或者
pip install requests
卸载第三方包
conda remove requests
或者
pip uninstall requests
查看环境包信息
conda list
二、
1.numpy的基础练习
1.1 创建一个长度为10的一维全为0的ndarray对象,然后让第5个元素等于1
import numpy as np
import pandas as pd
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
nd1=np.zeros(shape=10)
print(nd1)
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
nd1[4]=1
print(nd1)
[0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
1.2创建一个元素为从10到49的ndarray对象
np.random.randint(10,50,size=10)
array([15, 46, 12, 23, 14, 17, 11, 33, 19, 43])
np.linspace(10,49,10)
array([10. , 14.33333333, 18.66666667, 23. , 27.33333333,
31.66666667, 36. , 40.33333333, 44.66666667, 49. ])
a=np.arange(10,50)
a
array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49])
1.3将第2题的所有元素位置反转
a[::-1]
array([49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33,
32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16,
15, 14, 13, 12, 11, 10])
1.4使用np.random.random创建一个10*10的ndarray对象,并打印出最大最小元素
a4=np.random.random(size=(10,10))
a4
array([[3.37584318e-01, 1.66380231e-01, 5.19775832e-01, 6.81334548e-01,
4.75369700e-01, 6.18743626e-01, 8.01074725e-02, 8.98207914e-01,
6.90624108e-02, 5.07534320e-01],
[4.95534812e-01, 2.78593655e-01, 8.22801654e-01, 3.17300315e-01,
8.61403920e-01, 9.14944923e-01, 4.93203810e-01, 5.42548890e-01,
9.47282840e-01, 7.08857499e-01],
[9.12553163e-01, 7.61016568e-01, 4.18223961e-01, 8.48870447e-03,
5.41354134e-01, 2.57410070e-02, 4.90929948e-01, 7.12651541e-01,
4.07364768e-01, 8.33222680e-01],
[4.03590709e-01, 2.70067139e-01, 6.88946361e-01, 7.88004332e-01,
4.17960852e-02, 3.45079495e-01, 9.55316390e-01, 8.04357807e-01,
5.56987291e-01, 4.12043337e-01],
[2.15444141e-01, 5.17566882e-01, 9.15992201e-01, 5.92753320e-04,
9.63548709e-01, 6.65209264e-01, 5.36950207e-02, 8.27991649e-01,
5.75392227e-01, 6.26454185e-01],
[5.93986957e-01, 6.45832451e-01, 9.88837262e-02, 5.44961154e-01,
6.50960738e-01, 2.46075209e-01, 1.01602314e-01, 8.91950831e-01,
7.52140271e-01, 5.74721208e-02],
[1.00528717e-01, 4.91963000e-01, 7.49779083e-01, 1.60439670e-01,
9.27817241e-01, 7.65301870e-01, 6.82740994e-01, 2.81817580e-02,
3.03842012e-01, 9.46480387e-02],
[1.14020195e-01, 8.10497984e-01, 2.26690998e-01, 3.72284427e-01,
8.09969021e-02, 5.97997060e-01, 6.35191732e-01, 8.64360227e-01,
4.88479228e-01, 3.61277619e-01],
[6.86922803e-01, 9.38422790e-01, 6.78580880e-01, 9.80167211e-01,
9.73139287e-01, 7.99448475e-01, 5.81555592e-01, 5.61237555e-01,
8.50361498e-03, 1.79393179e-01],
[2.48136463e-01, 9.53749923e-01, 1.17303342e-01, 4.05213719e-01,
1.55281882e-01, 1.39889067e-01, 3.61702680e-02, 9.30082288e-02,
1.01174811e-01, 7.84393080e-01]])
zmin,zmax=a4.min(),a4.max()
zmin,zmax
(0.0005927533196952162, 0.9801672112341048)
1.5创建一个10*10的ndarray对象,且矩阵边界全为1,里面全为0
import numpy as np
nd =np.zeros(shape=(10,10),dtype=np.int8)
nd[[0,9]]=1
nd[:,[0,9]]=1
nd
array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=int8)
a5=np.ones((10,10))
a5
array([[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]])
a5[1:-1,1:-1]=0
a5
array([[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]])