[NOIP2008 普及组] 传球游戏
题目描述
上体育课的时候,小蛮的老师经常带着同学们一起做游戏。这次,老师带着同学们一起做传球游戏。
游戏规则是这样的: n n n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没有传出去的那个同学就是败者,要给大家表演一个节目。
聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了 m m m次以后,又回到小蛮手里。两种传球方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有三个同学 1 1 1号、 2 2 2号、 3 3 3号,并假设小蛮为 1 1 1号,球传了 3 3 3次回到小蛮手里的方式有 1 1 1-> 2 2 2-> 3 3 3-> 1 1 1和 1 1 1-> 3 3 3-> 2 2 2-> 1 1 1,共 2 2 2种。
输入格式
一行,有两个用空格隔开的整数 n , m ( 3 ≤ n ≤ 30 , 1 ≤ m ≤ 30 ) n,m(3 \le n \le 30,1 \le m \le 30) n,m(3≤n≤30,1≤m≤30)。
输出格式
1 1 1个整数,表示符合题意的方法数。
样例 #1
样例输入 #1
3 3
样例输出 #1
2
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define de(x) cout<<x<<" ";
#define sf(x) scanf("%d",&x);
#define Pu puts("");
const int N=1e3+10,M=2e5+10;
int f[N][N];
int n,m;
int main(){
cin>>n>>m;
f[1][0]=1;
for(int j=1;j<=m;j++){
//应该是在先固定长度,再去找坐标
//否则如果n在外层循环的话,就是某个点不动,此时以他左右为准
//更新不同的长度,显然一直是0
for(int i=1;i<=n;i++){
if(i==1) f[i][j]=f[n][j-1]+f[2][j-1];
else if(i==n) f[i][j]=f[1][j-1]+f[n-1][j-1];
else f[i][j]=f[i-1][j-1]+f[i+1][j-1];
}
}
de(f[1][m])
return 0;
}