目标检测中的AI技术:
“光学跟踪”是一种AI技术,可用来获取视频中的特定目标物理位置和数据。通常,我们应用AI技术识别篮球运动员,跟踪运动员的动作、比赛中的球、进球等事件,并将非结构化数据转为结构化数据。为了达成分析的目的,每场比赛至少需要 20,000多帧的数据支持。
这种比赛分析模型通常利用机器学习建立。大量高质量的标注数据能够帮助模型更高效地进行“学习”以及完成任务。模型的性能会随着数据训练不断加深而提高。
下面我们来看2个目标检测标注案例(2D框标注)
案例1:球2D框标注
1 目标物定义:
·球
比赛用球(非替换球)
1)因技术性原因可能出现在比赛区域之外(掷界外球时、发角球时等)
2)在比赛区域内出现的所有的球(例如,在球被替换的短暂时间间隔内,比赛区域内可能会有两个球)
2 标注说明:
·尽可能地找到目标球并进行标注
·当球不可见时,不需要标注
·当球部分可见时,需要进行脑补标注
·如果同时出现两个清晰可见的球,即使可以确定其中之一为主球,两个球都需要标注
案例2:球门2D框标注
1 项目描述:需从足球比赛视频中提取图像,用2D框对两个球门进行框选
2 输出格式:JSON
3 标注说明:
·标注要求&#x