目标检测--X-anylabeling使用自己的模型自动标注

一、x-anylabeling安装教程

x-anylabeling安装教程——软件安装教程——X-AnyLabeling 安装与自动标注

二、x-anylabeling使用自己的模型标注(YOLOv5 v6.0)

2.1 训练权重.pt转onnx

环境配置
将requiements.txt中export部分的注释恢复
在这里插入图片描述
然后pip install -r requirements.txt安装依赖

.pt转.onnx
yolov5 v6.0提供了pt文件转onnx或TorchScipt的代码(export.py)。
在export.py里面设置模型路径和yaml路径。
在这里插入图片描述
运行代码,并通过“–include”添加导出类型:

 python export.py  
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值