机器学习实战 学习记录 (4-5章)

参考:机器学习实战Peter Harrington

(11条消息) 机器学习实战教程(13篇)_chenyanlong_v的博客-CSDN博客_机器学习实战

四、朴素贝叶斯:(1)选择具有最高概率的决策。(用p1(x,y)表示数据点(x,y)属于类别1,p2(x,y)表示数据点(x,y)属于类别2,选择最高的概率)

优点:在数据较少的情况下仍然有效,可以处理多类别的问题

缺点:对于输入数据的准备方式较为敏感

适用数据类型:标称型数据

→条件概率:在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。在事件B发生的情况下

事件A发生的概率:

因此,

同理可得,

 

所以,

这就是条件概率的计算公式。

→全概率公式:

在上一节的推导当中,我们已知

所以,

这就是全概率公式。它的含义是,如果A和A'构成样本空间的一个划分,那么事件B的概率,就等于A和A'的概率分别乘以B对这两个事件的条件概率之和。

将这个公式代入上一节的条件概率公式,就得到了条件概率的另一种写法:

条件概率可变形为:

我们把P(A)称为"先验概率"(Prior probability),即在B事件发生之前,我们对A事件概率的一个判断。

P(A|B)称为"后验概率"(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估。

P(B|A)/P(B)称为"可能性函数"(Likelyhood),这是一个调整因子,使得预估概率更接近真实概率。

 即条件概率为:后验概率=先验概率*调整因子

在这里,如果"可能性函数"P(B|A)/P(B)>1,意味着"先验概率"被增强,事件A的发生的可能性变大;如果"可能性函数"=1,意味着B事件无助于判断事件A的可能性;如果"可能性函数"<1,意味着"先验概率"被削弱,事件A的可能性变小。

(2)朴素贝叶斯对条件个概率分布做了条件独立性的假设。

示例1:使用朴素贝叶斯进行文档分类

观察文档中出现的词,把每个词的出现与否作为一个特征。如果每个特征需要N个样本,那么对于10个特征将需要N^10个样本,如果特征之间相互独立,样本数就可减少到N*10。

# -*- coding: UTF-8 -*-
import numpy as np

def loadDataSet():
    postingList=[['my','dog','has','flea','problems','help','please'],
                  ['maybe','not','take','him','to','dog','park','stupid'],
                  ['my','dalmation','is','so','cute','I','love','him'],
                 ['stop','posting','stupid','worthless','garbage'],
                 ['mr','licks','ate','my','steak','how','to','stop','him'],
                 ['quit','buying','worthless','dog','food','stupid']]
    classVec=[0,1,0,1,0,1]#1代表侮辱性文字,0代表正常言论
    return postingList,classVec#postingList是存放词条列表,classVec是存放每个词条的所属类别

def createVocabList(dataSet):#创建一个空的不重复列表
    vocabSet=set([])
    for document in dataSet:
        vocabSet=vocabSet|set(document)#取并集
    return list(vocabSet)

def setOfWords2Vec(vocabList,inputSet):
    returnVec=[0]*len(vocabList)#创建一个其中元素都为0的向量
    for word in inputSet:#遍历每个词条
        if word in vocabList:#如果词条存在于词汇表中,则置1
            returnVec[vocabList.index(word)]=1
    else:print("the word:%s is not in my Vocabulary!"%word)
    return returnVec#返回文档向量

if __name__ =='__main__':
    postingList,classVec=loadDataSet()#postingList是原始的词条列表
    print('postingList:\n',postingList)
    myVocabList=createVocabList(postingList)#myVocabList是所有单词的集合(无重复)
    print('myVocabList:\n',myVocabList)
    trainMat=[]#trainMat是所有的词条向量组成的列表。它里面存放的是根据myVocabList向量化的词条向量(向量化即出现记1,未出现记0)
    for postinDoc in postingList:
        trainMat.append(setOfWords2Vec(myVocabList,postinDoc))
    print('trainMat:\n',trainMat)

计算概率:

# -*- coding: UTF-8 -*-
import numpy as np

def loadDataSet():
    postingList=[['my','dog','has','flea','problems','help','please'],
                  ['maybe','not','take','him','to','dog','park','stupid'],
                  ['my','dalmation','is','so','cute','I','love','him'],
                 ['stop','posting','stupid','worthless','garbage'],
                 ['mr','licks','ate','my','steak','how','to','stop','him'],
                 ['quit','buying','worthless','dog','food','stupid']]
    classVec=[0,1,0,1,0,1]#1代表侮辱性文字,0代表正常言论
    return postingList,classVec#postingList是存放词条列表,classVec是存放每个词条的所属类别

def createVocabList(dataSet):#创建一个空的不重复列表
    vocabSet=set([])
    for document in dataSet:
        vocabSet=vocabSet|set(document)#取并集
    return list(vocabSet)

def setOfWords2Vec(vocabList,inputSet):
    returnVec=[0]*len(vocabList)#创建一个其中元素都为0的向量
    for word in inputSet:#遍历每个词条
        if word in vocabList:#如果词条存在于词汇表中,则置1
            returnVec[vocabList.index(word)]=1
    else:print("the word:%s is not in my Vocabulary!"%word)
    return returnVec#返回文档向量

def trainNB0(trainMatrix,trainCategory):
    numTrainDocs=len(trainMatrix)#计算训练的文档数量,trainMatrix为训练文档矩阵
    numWords=len(trainMatrix[0])#计算每篇文档的词条数
    pAbusive=sum(trainCategory)/float(numTrainDocs)#文档属于侮辱类的概率,trainCategory是标签向量
    p0Num=np.zeros(numWords);p1Num=np.zeros(numWords)#创建numpy.zeros数组,词条出现数初始化为0
    p0Denom=0.0;p1Denom=0.0#分母初始化为0
    for i in range(numTrainDocs):
        if trainCategory[i]==1:#统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)···
            p1Num+=trainMatrix[i]
            p1Denom+=sum(trainMatrix[i])
        else:                  #统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)···
            p0Num+=trainMatrix[i]
            p0Denom+=sum(trainMatrix[i])
    p1Vect=p1Num/p1Denom #p1V是侮辱性言论的调整因子
    p0Vect=p0Num/p0Denom #p2V是侮辱性言论的调整因子
    return p0Vect,p1Vect,pAbusive#返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率


if __name__ =='__main__':
    postingList,classVec=loadDataSet()
    myVocabList=createVocabList(postingList)
    print('myVocabList:\n',myVocabList)
    trainMat=[]
    for postinDoc in postingList:
        trainMat.append(setOfWords2Vec(myVocabList,postinDoc))
    p0V,p1V,pAb=trainNB0(trainMat,classVec)#pAb是先验概率
    print('p0V:\n',p0V)
    print('p1V:\n',p1V)
    print('classVec:\n',classVec)
    print('pAb:\n',pAb)

使用分类器进行分类:

①利用贝叶斯分类器进行文档分类时,要进行多个概率的乘积,如果其中一个概率值为0,则全为0。为降低这种影响,可将所有词的出现数初始化为1,将分母的初始化为2。

p0Num=ones(numWords);p1Num=ones(numWords)

p0Denom=2.0;p1Denom=2.0

②另一个问题是下溢出,这是由于太多很小的数相乘造成的(概率P<1),最终结果会得到。一种解决方法是对乘积取自然对数。

p1Vec=log(p1Num/p1Denom)

p2Vec=log(p0Num/p0Denom)

# -*- coding: UTF-8 -*-
import numpy as np
from functools import reduce
from math import log

def loadDataSet():
    postingList=[['my','dog','has','flea','problems','help','please'],
                  ['maybe','not','take','him','to','dog','park','stupid'],
                  ['my','dalmation','is','so','cute','I','love','him'],
                 ['stop','posting','stupid','worthless','garbage'],
                 ['mr','licks','ate','my','steak','how','to','stop','him'],
                 ['quit','buying','worthless','dog','food','stupid']]
    classVec=[0,1,0,1,0,1]#1代表侮辱性文字,0代表正常言论
    return postingList,classVec#postingList是存放词条列表,classVec是存放每个词条的所属类别

def createVocabList(dataSet):#创建一个空的不重复列表
    vocabSet=set([])
    for document in dataSet:
        vocabSet=vocabSet|set(document)#取并集
    return list(vocabSet)

def setOfWords2Vec(vocabList,inputSet):
    returnVec=[0]*len(vocabList)#创建一个其中元素都为0的向量
    for word in inputSet:#遍历每个词条
        if word in vocabList:#如果词条存在于词汇表中,则置1
            returnVec[vocabList.index(word)]=1
    else:print("the word:%s is not in my Vocabulary!"%word)
    return returnVec#返回文档向量

def trainNB0(trainMatrix,trainCategory):
    numTrainDocs=len(trainMatrix)#计算训练的文档数量,trainMatrix为训练文档矩阵
    numWords=len(trainMatrix[0])#计算每篇文档的词条数
    pAbusive=sum(trainCategory)/float(numTrainDocs)#文档属于侮辱类的概率,trainCategory是标签向量
    p0Num=np.ones(numWords);p1Num=np.ones(numWords)#所有词的出现次数初始化为1
    p0Denom=2.0;p1Denom=2.0#分母初始化为2
    for i in range(numTrainDocs):
        if trainCategory[i]==1:#统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)···
            p1Num+=trainMatrix[i]
            p1Denom+=sum(trainMatrix[i])
        else:                  #统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)···
            p0Num+=trainMatrix[i]
            p0Denom+=sum(trainMatrix[i])
    p1Vect=np.log(p1Num/p1Denom)
    p0Vect=np.log(p0Num/p0Denom)
    return p0Vect,p1Vect,pAbusive#返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率

def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1):#vec2Classify是待分类的词条数组,p0Vec是非侮辱类的条件概率数组,p1Vec是侮辱类条件概率数组,pclass1是文档属于侮辱类的概率(先验概率)
    p1=sum(vec2Classify*p1Vec)+log(pClass1)#不同的ci
    p0=sum(vec2Classify*p0Vec)+log(1.0-pClass1)
    print('p0:',p0)
    print('p1:',p1)
    if p1>p0:
        return 1
    else:
        return 0

def testingNB():
    listOPosts,listClasses=loadDataSet()#创建实验样本
    myVocabList=createVocabList(listOPosts)#创建词汇表
    trainMat=[]
    for postinDoc in listOPosts:
        trainMat.append(setOfWords2Vec(myVocabList,postinDoc))#将实验样本向量化
    p0V,p1V,pAb=trainNB0(np.array(trainMat),np.array(listClasses))#训练朴素贝叶斯分类器
    testEntry=['love','my','dalmation']
    thisDoc=np.array(setOfWords2Vec(myVocabList,testEntry))#测试样本向量化
    if classifyNB(thisDoc,p0V,p1V,pAb):#训练分类并打印
        print(testEntry,'属于侮辱类')
    else:
        print(testEntry,'属于非侮辱类')
    testEntry=['stupid','garbage']

    thisDoc=np.array(setOfWords2Vec(myVocabList,testEntry))
    if classifyNB(thisDoc,p0V,p1V,pAb):
        print(testEntry,'属于侮辱类')
    else:
        print(testEntry,'属于非侮辱类')

if __name__=='__main__':
    testingNB()

if __name__ =='__main__':
    postingList,classVec=loadDataSet()
    myVocabList=createVocabList(postingList)
    print('myVocabList:\n',myVocabList)
    trainMat=[]
    for postinDoc in postingList:
        trainMat.append(setOfWords2Vec(myVocabList,postinDoc))
    p0V,p1V,pAb=trainNB0(trainMat,classVec)
    print('p0V:\n',p0V)
    print('p1V:\n',p1V)
    print('classVec:\n',classVec)
    print('pAb:\n',pAb)

示例2:

示例3: 

五、Logistic回归:(1)根据现有的数据对分类边界线建立回归公式(回归一词源于“最佳拟合”,我们用一条直线对现有的数据点进行拟合的过程称为回归)通常,Logistic回归用于二分类问题。

优点:计算代价不高,易于实现

缺点:容易欠拟合,分类精度不高

适用数据类型:数值型、标称型(是/否)

→sigmoid函数:

为了实现logistic回归分类器,我们可以在每个特征上都乘一个回归系数,然后把所有的结果值相加,将这个总和带入sigmoid函数,进而得到一个范围在0~1之间的数值。任何>0.5的被分入1类,<0.5的被分入0类,所以logistic回归也可被看作一种概率估计。 

sigmoid函数的输入记为z,z=w0x0+w1x1+...+wnxn,向量的写法即为 

它表示这两个数值向量对应元素相乘然后全部相加得到Z值,其中向量X是输入数据,向量W是我们要找到的最佳回归系数。 

 (2)梯度上升法:要找到某函数的最大值,最快最好的方法是沿着该函数的梯度方向探寻。

根据sigmoid函数的特性,我们可以做出如下的假设:(θ即为w)

即为在已知样本x和参数θ的情况下,样本x属性正样本(y=1)和负样本(y=0)的条件概率。理想状态下,根据上述公式,求出各个点的概率均为1,也就是完全分类都正确。但是考虑到实际情况,样本点的概率越接近于1,其分类效果越好。比如一个样本属于正样本的概率为0.51,那么我们就可以说明这个样本属于正样本。另一个样本属于正样本的概率为0.99,那么我们也可以说明这个样本属于正样本。但是显然,第二个样本概率更高,更具说服力。我们可以把上述两个概率公式合二为一:

合并出来的Loss,我们称之为损失函数。当y等于1时,(1-y)项(第二项)为0;当y等于0时,y项(第一项)为0。为s了简化问题,我们对整个表达式求对数:

这个损失函数,是对于一个样本而言的。给定一个样本,我们就可以通过这个损失函数求出,样本所属类别的概率,而这个概率越大越好,所以也就是求解这个损失函数的最大值。既然概率出来了,那么最大似然估计也该出场了。假定样本与样本之间相互独立,那么整个样本集生成的概率即为所有样本生成概率的乘积,便可得到如下公式:

其中,m为样本的总数,y(i)表示第i个样本的类别,x(i)表示第i个样本,需要注意的是θ是多维向量,x(i)也是多维向量。

就像爬坡一样,一点一点逼近极值。这种寻找最佳拟合参数的方法,就是最优化算法。爬坡这个动作用数学公式表达即为:

其中,α为步长,也就是学习速率,控制更新的幅度。

 梯度上升算法测试:

# -*- coding: UTF-8 -*-

def Gradient_Ascent_test():
    def f_prime(x_old):
        return -x_old+4#求f(x)=-x^2+4x的导数
    x_old=-1#初始值,定一个小于x_new的值
    x_new=0#梯度上升算法初始值,即从(0,0)开始
    alpha=0.01#学习率
    presision=0.00000001#精度,即更新阈值
    while abs(x_new-x_old)>presision:
        x_old=x_new
        x_new=x_old+alpha*f_prime(x_old)#xi+1=xi+a*f'(xi)
    print(x_new)#打印最终求解的极值近似值

if __name__=='__main__':
    Gradient_Ascent_test()

 

已经非常接近我们的真实极值2了。这一过程,就是梯度上升算法。那么同理,J(θ)这个函数的极值,也可以这么求解。公式可以这么写:

由上小节可知J(θ)为:

sigmoid函数为:

现在我只要求出J(θ)的偏导,就可以利用梯度上升算法,求解J(θ)的极大值了

综上所述:

因此,梯度上升迭代公式为:

 示例1:

# -*- coding: UTF-8 -*-
import matplotlib.pyplot as plt
import numpy as np

def loadDataSet():
    dataMat=[]#创建数据列表
    labelMat=[]#创建标签列表
    fr=open('testSet.txt')
    for line in fr.readlines():#逐行读取
        lineArr=line.strip().split()#去回车 放入列表
        dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])])#添加数据
        labelMat.append(int(lineArr[2]))#添加标签
    fr.close()#关闭文件
    return dataMat,labelMat

def sigmoid(inX):
    return 1.0/(1+np.exp(-inX))#sigmoid公式

def gradAscent(dataMatIn,classLabels):#输入数据集,数据标签
    dataMatrix=np.mat(dataMatIn)#调用mat()函数可以将数组转换为矩阵
    labelMat=np.mat(classLabels).transpose()#调用transpose使该矩阵变为转置
    m,n=np.shape(dataMatrix)#返回dataMatrix的大小。m为行数,n为列数
    alpha=0.001
    maxCycles=500#最大迭代次数
    weights=np.ones((n,1))
    for k in range(maxCycles):
        h=sigmoid(dataMatrix*weights)#梯度上升矢量化公式
        error=(labelMat-h)
        weights=weights+alpha*dataMatrix.transpose()*error#梯度上升迭代公式
    return weights.getA()#getA()函数与mat()函数的功能相反,是将一个numpy矩阵转换为数组

if __name__=='__main__':
    dataMat,labelMat=loadDataSet()
    print(gradAscent(dataMat,labelMat))

 

绘制决策边界:

# -*- coding: UTF-8 -*-
import matplotlib.pyplot as plt
import numpy as np

def loadDataSet():
    dataMat=[]#创建数据列表
    labelMat=[]#创建标签列表
    fr=open('testSet.txt')
    for line in fr.readlines():#逐行读取
        lineArr=line.strip().split()#去回车 放入列表
        dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])])#添加数据
        labelMat.append(int(lineArr[2]))#添加标签
    fr.close()#关闭文件
    return dataMat,labelMat

def sigmoid(inX):
    return 1.0/(1+np.exp(-inX))#sigmoid公式

def gradAscent(dataMatIn,classLabels):#输入数据集,数据标签
    dataMatrix=np.mat(dataMatIn)#调用mat()函数可以将数组转换为矩阵
    labelMat=np.mat(classLabels).transpose()#调用transpose使该矩阵变为转置
    m,n=np.shape(dataMatrix)#返回dataMatrix的大小。m为行数,n为列数
    alpha=0.001
    maxCycles=500#最大迭代次数
    weights=np.ones((n,1))
    for k in range(maxCycles):
        h=sigmoid(dataMatrix*weights)#梯度上升矢量化公式
        error=(labelMat-h)
        weights=weights+alpha*dataMatrix.transpose()*error#更新
    return weights.getA()#getA()函数与mat()函数的功能相反,是将一个numpy矩阵转换为数组

def plotBestFit(weights):
    dataMat,labelMat=loadDataSet()
    dataArr=np.array(dataMat)#转换成numpy的array数组
    n=np.shape(dataMat)[0]#样本个数
    xcord1=[];ycord1=[]#正样本
    xcord2=[];ycord2=[]#负样本
    for i in range(n):#根据数据集标签进行分类
        if int(labelMat[i])==1:#1为正样本
            xcord1.append(dataArr[i,1]);ycord1.append(dataArr[i,2])
        else:                  #0为负样本
            xcord2.append(dataArr[i,1]);ycord2.append(dataArr[i,2])
    fig=plt.figure()
    ax=fig.add_subplot(111)#添加subplot
    ax.scatter(xcord1,ycord1,s=20,c='yellow',marker='s',alpha=.5)#绘制正样本
    ax.scatter(xcord2,ycord2,s=20,c='green',alpha=.5)#绘制负样本
    x=np.arange(-3.0,3.0,0.1)#np.arange()函数返回一个有终点和起点的固定步长的排列
    y=(-weights[0]-weights[1]*x)/weights[2]#设置sigmoid函数为0,0使类别1和0的分界,我们设定0=w0x0+w1x1+w2x2(x0=0),解出x1 x2的关系式,即分隔线的方程
    ax.plot(x,y)
    plt.xlabel('x1');plt.ylabel('x2');#绘制label
    plt.show()

if __name__=='__main__':
    dataMat,labelMat=loadDataSet()
    weights=gradAscent(dataMat,labelMat)
    plotBestFit(weights)

 

示例2:改进的随机梯度上升

梯度上升算法在每次更新回归系数都要遍历整个数据集,如果特征数目过多,则会造成计算复杂度过高。一种改进方法是一次仅用一个样本点来更新回归系数,该方法即为随机梯度上升。

# -*- coding
from matplotlib.font_manager import FontProperties
import matplotlib.pyplot as plt
import numpy as np
import random

def loadDataSet():
    dataMat=[]#创建数据列表
    labelMat=[]#创建标签列表
    fr=open('testSet.txt')
    for line in fr.readlines():#逐行读取
        lineArr=line.strip().split()#去回车 放入列表
        dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])])#添加数据
        labelMat.append(int(lineArr[2]))#添加标签
    fr.close()#关闭文件
    return dataMat,labelMat

def sigmoid(inX):
    return 1.0/(1+np.exp(-inX))#sigmoid公式


def plotBestFit(weights):
    dataMat,labelMat=loadDataSet()
    dataArr=np.array(dataMat)#转换成numpy的array数组
    n=np.shape(dataMat)[0]#样本个数
    xcord1=[];ycord1=[]#正样本
    xcord2=[];ycord2=[]#负样本
    for i in range(n):#根据数据集标签进行分类
        if int(labelMat[i])==1:#1为正样本
            xcord1.append(dataArr[i,1]);ycord1.append(dataArr[i,2])
        else:                  #0为负样本
            xcord2.append(dataArr[i,1]);ycord2.append(dataArr[i,2])
    fig=plt.figure()
    ax=fig.add_subplot(111)#添加subplot
    ax.scatter(xcord1,ycord1,s=20,c='yellow',marker='s',alpha=.5)#绘制正样本
    ax.scatter(xcord2,ycord2,s=20,c='green',alpha=.5)#绘制负样本
    x=np.arange(-3.0,3.0,0.1)#np.arange()函数返回一个有终点和起点的固定步长的排列
    y=(-weights[0]-weights[1]*x)/weights[2]#设置sigmoid函数为0,0使类别1和0的分界,我们设定0=w0x0+w1x1+w2x2(x0=0),解出x1 x2的关系式,即分隔线的方程
    ax.plot(x,y)
    plt.xlabel('x1');plt.ylabel('x2');#绘制label
    plt.show()


def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    m, n=np.shape(dataMatrix)#返回dataMatrix的大小。m为行数,n为列数
    weights=np.ones(n)#参数初始化
    for j in range(numIter):
        dataIndex=list(range(m))
        for i in range(m):
            alpha=4/(1.0+j+i)+0.01#降低alpha的大小,每次减小1/(j+i),j是迭代次数,i是样本点的下标
            randIndex=int(random.uniform(0, len(dataIndex)))#随机选取样本
            h=sigmoid(sum(dataMatrix[dataIndex[randIndex]] * weights))#选择随机选取的一个样本,计算h
            error=classLabels[dataIndex[randIndex]] - h#计算误差
            weights=weights + alpha * error * dataMatrix[dataIndex[randIndex]]#更新回归系数
            del(dataIndex[randIndex])#删除已经使用的样本
    return weights  #返回


if __name__ == '__main__':
    dataMat, labelMat = loadDataSet()
    weights = stocGradAscent1(np.array(dataMat), labelMat)
    plotBestFit(weights)

 

①alpha在每次迭代的时候都会调整,并且,虽然alpha会随着迭代次数不断减小,但永远不会减小到0,因为这里还存在一个常数项。必须这样做的原因是为了保证在多次迭代之后新数据仍然具有一定的影响。 

②第二个改进的地方在于更新回归系数(最优参数)时,只使用一个样本点,并且选择的样本点是随机的,每次迭代不使用已经用过的样本点。这样的方法,就有效地减少了计算量,并保证了回归效果。

改进的随机梯度上升算法,在遍历数据集的第20次开始收敛。而梯度上升算法,在遍历数据集的第300次才开始收敛。

 示例3:

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值