投资收益与风险

文章展示了使用线性规划方法解决投资和销售问题的实例。在投资案例中,探讨了基于平均收益率、风险损失率和交易费用的单目标线性规划,通过调整风险参数生成风险收益图。在销售案例中,优化了产品组合以最大化利润。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

投资案例

销售案例


投资案例


模型假设:

①每种投资是否收益是相互独立的

②在短时期内所购买的各种资产(如股票,证券等)不进行买卖交易,即在买入后就不再卖出

③在投资的过程中,无论盈利与否必须先付交易费

④在短时期内所给出的平均收益率、损失率和交易的费率不变

单目标线性规划:

其中r表示平均收益率,q表示风险损失率,p为交易费费率,x为投资金额。

clear all 
clc
f=-[0.05,0.075,0.153,0.434,0.224,0.005,0.106,0.351,...
    0.281,0.309,0.339,0.067,0.033,0.323,0.049,0.074]'; %目标向量
A=zeros(15,15);
a=[0.42,0.54,0.6,0.42,0.012,0.39,0.68,0.3343,0.533,0.4,0.31,0.055,0.46,0.053,0.23];
B=diag(a,0);
a=zeros(15,1);
A=[a,B]; %不等式左端的系数矩阵
aeq=[1,1.021,1.032,1.06,1.015,1.076,1.034,1.056,1.031,...
    1.027,1.029,1.051,1.057,1.027,1.045,1.076];  
beq=[1];
lb=zeros(16,1);
i=1;
for k=0.01:0.04:0.62
    b=[k,k,k,k,k,k,k,k,k,k,k,k,k,k,k]';
    [x,fval,exitflag,options,output]=linprog(f,A,b,aeq,beq,lb);
    x
    y(i)=-fval
    i=i+1;
end
k=0.01:0.04:0.62;
plot(k,y);
xlabel('风险');
ylabel('收益');
title('风险收益图(n=15)')	


销售案例


 

clear all 
clc
c=[-10 -9];
A=[6 5;10 20;1 0];
b=[50;160;8];
Aeq=[]; 
beq=[];
vlb=[0;0]; 
vub=[];
[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)


结果:
x =

    2.8571
    6.5714


fval =

  -87.7143
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值