数字电子技术—逻辑代数基础

本文概述了逻辑运算的基础概念,包括基本逻辑门、复合运算、逻辑代数定律、常用公式以及逻辑函数的表示方法。重点介绍了逻辑函数的化简策略,如代数法和卡诺图法,以帮助理解数字电路设计中的逻辑分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、基本逻辑运算

 与 、或、 非    

二、复合逻辑运算

1、与非:有0出1,全1为0

2、或非:有1出0,全0为1

3、异或:相同为0,不同为1

4、同或:相同为1,不同为0

同或和异或互为取反关系异或和同或是对于两输入变量之间的关系

对于与门、或门、非门都可以有多个输入端,而异或和同或只能有两个输入端

三、逻辑代数的基本定律和恒等式

基本定律:结合律、交换律、分配律、0—1律、反演律吸收律

恒等式:A+0=A     A·1=A     A·A=A      A·0=0

在数字电路中,有二值逻辑,逻辑变量非0即1

四、逻辑代数的基本规则

1、代入规则 :用某逻辑函数替换另一等式中的某一逻辑变量,逻辑等式依然成立

2、反演规则 :原变量变反变量、反变量变原变量、与变或、或变与、0变1、1变0

     反演再反演即为原式

3、对偶规则 :变量不变、与变或、或变与、0变1、1变0、对偶表达式与原式没有逻辑关系

     两式的对偶式具有相等关系,则原式的相等关系也成立

     对偶再对偶即为原式

【注】对于反演和对偶都应遵守:不属于单一变量的非号表示不变、

                                                      保持原变量的运算优先顺序(括号里的先算)

五、常用公式

1、合并相邻项公式:除了互补变量,其它变量相同的两项为相邻项目,可以合并为公共项

这个公式是卡诺图化简逻辑函数的关键思路

推广使用:

2、消项公式:两乘积项相加,其中一项为另一乘积项的因子,则以它为因子的乘积项可以消去

推广使用:

3、等同公式:两乘积项相加,其中一项取反后为另一项的因子,则这个取反项可以消去

推广使用:

4、包含公式:在多乘积项相加时,含有互反因子的两项中去除互反因子后,所组成的乘积项为其它项的乘积因子,则此项可以消去

推广使用:

5、异或和同或的常用公式

在实际的编程应用中也可以利用异或的关系很容易的对变量进行取反的操作,同或和异或较有实际应用意义

例:A\oplus1可以对A变量进行取反操作,在单片机中可以利用这一语句实现LED的闪烁功能

六、逻辑计算以及逻辑函数的表示方法

真值表、逻辑函数、逻辑图、卡诺图、波形图(时序图)、硬件描述语言

七、逻辑函数常用的表达形式

1、与-或表达式:最常用的形式

2、与非-与非表达式:与-或表达式两次取反得到

3、或-与表达式:由与-或两次对偶得到

4、或非-或非表达式

5、与或非表达式:或-与表达式两次取反得到

八、逻辑函数的标准形式

1、最小项

n个变量构成的与项,每个因子只以原变量或者反变量出现一次(仅一次)

通常用 m_i表示,i为将最小项中的原变量用1表示,反变量用0表示的二进制数对应的十进制值

确定i的两个重要前提变量顺序、变量个数,都规定了之后m_i表示才唯一

n变量一定有2^n个最小项

性质:

        1.在变量的所有取值组合中,只有一种取值情况使得每个最小项值为1;

        2.不同最小项的为1的变量取值是不同的

        3.所有最小项加起来等于1

        4.任意两个最小项相乘为0(除了自己乘自己)

2、最大项

n个变量构成的或项,每个因子只以原变量或者反变量出现一次(仅一次)

通常用 M_i表示,i为将最小项中的原变量用0表示,反变量用1表示的二进制数对应的十进制值

确定i的两个重要前提变量顺序、变量个数,都规定了之后M_i表示才唯一

n变量一定有2^n个最大项

性质:

        1.在变量的所有取值组合中,只有一种取值情况使得每个最大项值为1;

        2.不同最大项的为1的变量取值是不同的

        3.所有最大项相乘为0

        4.任意两个最大项之和为1(除了自己加自己)

下标相同的最大项和最小项互补

3、无关项

在实际的应用中产生得概念,无关项的出现与否不影响表达式的结果

4、最大项表达式:都是最大项相与的表达式【或-与表达式】

5、最小项表达式:都是最小项相或的表达式【与-或表达式】

逻辑函数的标准表达形式就是最小项表达式和最大项表达式

最大项表达式【乘积形式】和最小项表达式【求和形式】可以直接进行相互转换

对于三变量的逻辑函数:F=\sum m(2,4,6,7) = \prod M(0,1,3,5)

对于同一组逻辑变量,最大项表达式取非两次等于最小项表达式

若含有无关项,无关项保留,不发生改变。

九、逻辑函数的化简方法

1、代数法: 灵活运用常见的公式

     并项、吸收、消去、配项

2、卡诺图法(常用)

卡诺图的特点:n变量有2^n个小方格包括了所有的最小项、变量取值按照格雷码的顺序排放,保证了在卡诺图任意位置几何相邻的两项都为逻辑相邻项

相邻:最小项中只有一个变量取值不一样 ,上下左右是循环相邻

卡诺图的缺点:不太能用于6变量以上的逻辑函数化简,变量个数越多越复杂

卡诺图的填写方法:通过配项得到最小项或者最大项表达式

                              将逻辑函数写成最小项表达式,在对应位置填1

                              将逻辑函数写成最大项表达式,在对应位置填0

卡诺图的化简:利用圈0或者圈1的方式消除相邻项中的某些变量

                          2个相邻消去1个变量        

                          4个相邻消去2个变量

                          8个相邻消去3个变量

化简原则:

                   画圈个数尽量的少,包括的最小项的个数尽量的多

                  可以重复画圈,但是两个圈中需要有至少有一个最小项不同

                  四个角是相邻的,可以画圈

                  先画唯一可能的圈、避免重复的画圈

                  无关项即可以看成0,也可以看成1,一切以化简为目的,但每个1都要被圈到

最后的化简结果可能不唯一、但是项数是一样的

1多的时候可以利用逆向思维圈0得到反变量的表达式

利用圈0可以得到与或非表达式

只要是与或表达式就可以直接填进卡诺图进行化简、不一定是最小项

以上为本人学习数字电子技术所做笔记,若有不妥之处,恳请各位指正

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值