基于auto-sklearn对2020年心脏病数据预测

这篇博客主要介绍了如何基于auto-sklearn对心脏病数据进行预测。首先从kaggle获取数据,然后进行数据预处理,包括重采样以解决数据不平衡问题。接着将数据转换为模型输入格式,并划分训练集和测试集。经过4小时训练,模型在训练集上的最高准确率为0.8642,测试集上为0.8516,显示了良好的泛化能力。

1.数据获取与处理

1)数据来源于kaggle,已免费上传到个人主页,可自取。

2)数据样式

df.head(5)
Out[119]: 
  HeartDisease    BMI Smoking  ... KidneyDisease SkinCancer  target
0           No  16.60     Yes  ...            No        Yes       0
1           No  20.34      No  ...            No         No       0
2           No  26.58     Yes  ...            No         No       0
3           No  24.21      No  ...            No        Yes       0
4           No  23.71      No  ...            No         No       0

[5 rows x 19 columns]
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 319795 entries, 0 to 319794
Data columns (total 19 columns):
 #   Column            Non-Null Count   Dtype  
---  ------            --------------   -----  
 0   HeartDisease      319795 non-null  object 
 1   BMI               319795 non-null  float64
 2   Smoking           319795 non-null  object 
 3   AlcoholDrinking   319795 non-null  object 
 4   Stroke            319795 non-null  object 
 5   PhysicalHealth    319795 non-null  float64
 6   MentalHealth      319795 non-null  float64
 7   DiffWalking       319795 non-null  object 
 8   Sex               319795 non-null  object 
 9   AgeCategory       319795 non-null  object 
 10  Race              319795 non-null  object 
 11  Diabetic          319795 non-null  object 
 12  PhysicalActivity  319795 non-null  object 
 13  GenHealth         319795 non-null  object 
 14  SleepTime         319795 non-null  float64
 15  Asthma            319795 non-null  object 
 16  KidneyDisease     319795 non-null  object 
 17  SkinCancer        319795 non-null  object 
 18  target            319795 non-null  int64  
dtypes: float64(4), int64(1), ob
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值