22ccpc桂林E - Draw a triangle 向量求三角形面积,exgcd

本文精选了几道算法题目,包括Floyd算法实现城市间最短路径计算、二元一次不定方程求解、向量求解三角形最小面积等问题,并提供了详细的代码实现。

295B - Greg and Graph floyd

由于对Floyd的本质还是不大清楚所以做这个题还是费了点功夫,可以把整个过程反过来,就变成了解锁每个点对当前已有点的影响,其实这样也就相当于一个floyd了,值得注意的是虽然有的点没有解锁,但是是可以参与转移的,只不过累加和的时候不能加上他,为什么可以参加转移呢?因为最开始的那个k循环实际的意义就是将k这个点作为中转点来更新i和j的最短路,k是被解锁的,所以如果i和j通过k转移也是合法的,这样还不会漏掉情况

题解 P1119 【灾后重建】 - Time_Rune 的博客 - 洛谷博客 (luogu.com.cn)

#include <bits/stdc++.h>
using namespace std;
#define int long long
//const int mod=1e9+7;
const int inf=1e18;
const int N = 2e6+100;
int n,g[505][505],a[505][505],ans[505],b[505],vis[505];
signed main()
{
    ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    //cout<<(1LL<<19)<<endl;
    cin>>n;
    for(int i=1;i<=n;i++)
    for(int j=1;j<=n;j++)
    {
        cin>>a[i][j];
        g[i][j]=a[i][j];
    }
    for(int i=1;i<=n;i++) cin>>b[i],vis[i]=0;
    for(int k=n;k>=1;k--)
    {
        vis[b[k]]=1;
        for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
        {
            g[i][j]=min(g[i][j],g[i][b[k]]+g[b[k]][j]);
           // if(k==2&&i==3&&j==4) cout<<g[i][j]<<" jjj "<<i<<" "<<j<<" "<<g[i][b[k]]<<" "<<g[b[k]][j]<<" "<<b[k]<<endl;
        }

        int res=0;
        for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
        {
            //if(k==2) cout<<g[i][j]<<" "<<i<<" "<<j<<endl;
            if(vis[i]&&vis[j]) res+=g[i][j];
        }
        ans[k]=res;
    }
    for(int i=1;i<=n;i++) cout<<ans[i]<<" ";
    system("pause");
    return 0;
}

/*
4
0 57148 51001 13357
71125 0 98369 67226
49388 90852 0 66291
39573 38165 97007 0
2 3 1 4
*/

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

killer_queen4804

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值