复杂网络建模(六)

幂律分布的离散和连续形式

离散形式:由于节点的度是正整数,k=0,1,2……,因此,表示一个节点正好有k个链接的概率pk是一种离散形式的幂律分布:
p k = C k − γ p_k=Ck^{-\gamma } pk=Ckγ
常数C由如下归一化条件来确定:
∑ k = 1 ∞ p k = 1 \sum_{k=1}^{\infty}p_k=1 k=1pk=1
即:
C ∑ k = 1 ∞ k − γ = 1 C\sum_{k=1}^{\infty}k^{-\gamma}=1 Ck=1kγ=1
所以:
C = 1 ∑ k = 1 ∞ k − γ = 1 ζ ( γ ) C=\frac{1}{\sum_{k=1}^{\infty}k^{-\gamma}}=\frac{1}{\zeta (\gamma)} C=k=1kγ1=ζ(γ)1
其中, ζ ( γ ) \zeta (\gamma) ζ(γ)是黎曼泽塔函数。因此,对任意的k>0,离散形式的幂律分布为:
p k = k − γ ζ ( γ ) p_k=\frac{k^{-\gamma}}{\zeta (\gamma)} pk=ζ(γ)kγ
连续形式:方便起见,在进行解析计算时,通常会假设度可以为任意正实数,在这种情况下,可以把幂律度分步写成:
p ( k ) = C k − γ p(k) =Ck^{-\gamma} p(k)=Ckγ
使用归一化条件
∫ k m i n ∞ p ( k ) d k = 1 \int_{k_{min}}^{\infty}p(k)dk=1 kminp(k)dk=1
可以得到
C = 1 ∫ k m i n ∞ k − γ d k = ( γ − 1 ) k m i n γ − 1 C=\frac{1}{\int_{k_{min}}^{\infty}k^{-\gamma}dk}=(\gamma-1)k_{min}^{\gamma-1} C=kminkγdk1=(γ1)kminγ1
所以,度分布的连续形式为
p ( k ) = ( γ − 1 ) k m i n γ − 1 k − γ p(k)=(\gamma-1)k_{min}^{\gamma-1}k^{-\gamma} p(k)=(γ1)kminγ1kγ

最大的枢纽节点

在这里插入图片描述
结论:枢纽节点在随机网络中不存在,在无标度网络却自然出现。

无标度的含义

在这里插入图片描述

度指数

在这里插入图片描述

总结

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值