黎曼的zeta函数(0)

没想到这篇文章有这么多人感兴趣,为表示感谢,本次带来续篇传送门
让我们继续探究黎曼 ζ \zeta ζ函数的奥妙吧~

Γ \Gamma Γ函数

考虑如下等式
∑ k = 0 ∞ x k = 1 + x + x 2 + ⋯ = 1 1 − x \sum^{\infin}_{k=0}x^k = 1 + x +x^2 + \cdots = \frac{1}{1-x} k=0xk=1+x+x2+=1x1
而恰有
∫ 0 ∞ e − ( 1 − x ) t d t = [ − 1 1 − x e − ( 1 − x ) t ] 0 ∞ = 1 1 − x \int_0^{\infin}e^{-(1-x)t}\rm dt = [-\frac{1}{1-x}e^{-(1-x)t}]_0^{\infin} = \frac{1}{1-x} 0e(1x)tdt=[1x1e(1x)t]0=1x1
所以
∑ k = 0 ∞ x k = ∫ 0 ∞ e − ( 1 − x ) t d t \sum^{\infin}_{k=0}x^k = \int_0^{\infin}e^{-(1-x)t}\rm dt k=0xk=0e(1x)tdt
e x t e^{xt} ext使用泰勒展开
∫ 0 ∞ e − ( 1 − x ) t d t = ∫ 0 ∞ e − t ∑ k = 0 ∞ ( x t ) k k ! d t \int_0^{\infin}e^{-(1-x)t}\rm dt = \int_0^{\infin}e^{-t}\sum_{k=0}^{\infin}\frac{(xt)^k}{k!}\rm dt 0e(1x)tdt=0etk=0k!(xt)kdt
e − t e^{-t} et乘到求和号里面,再交换积分和求和的次序,就有
∑ k = 0 ∞ x k = ∑ k = 0 ∞ ∫ 0 ∞ e − t t k d t x k k ! \sum^{\infin}_{k=0}x^k =\sum_{k=0}^{\infin}\int_0^{\infin}e^{-t}t^k\rm dt\frac{x^k}{k!} k=0xk=k=00ettkdtk!xk
对比系数,我们得到
k ! = ∫ 0 ∞ t k e − t d t k! = \int_0^{\infin}t^ke^{-t}\rm dt k!=0tketdt
实际上,欧拉曾经考虑过与此相关的两个(积分)函数,现在称为第一类欧拉积分的 B \Beta B函数
B ( a , b ) = ∫ 0 1 x a − 1 ( 1 − x ) b − 1 d x \Beta(a, b) = \int_0^1x^{a-1}(1-x)^{b-1}\rm dx B(a,b)=01xa1(1x)b1dx
和现在称为第二类欧拉积分的Gamma函数
Γ ( a ) = ∫ 0 ∞ x a − 1 e − x d x \Gamma(a) = \int_0^{\infin}x^{a-1}e^{-x}\rm dx Γ(a)=0xa1exdx
使用分部积分,很容易证明
Γ ( a ) = ( a − 1 ) Γ ( a − 1 ) \Gamma(a) = (a-1)\Gamma(a-1) Γ(a)=(a1)Γ(a1)
加之 Γ ( 1 ) = 1 \Gamma(1) = 1 Γ(1)=1,用归纳法就可以得出
Γ ( n ) = ( n − 1 ) !   ∀ n ∈ N \Gamma(n) = (n -1)! ~ \forall n \in \N Γ(n)=(n1)! nN

余元公式

Γ ( s ) Γ ( 1 − s ) = π sin ⁡ ( s π ) \Gamma(s)\Gamma(1-s)=\frac{\pi}{\sin(s\pi)} Γ(s)Γ(1s)=sin(sπ)π
根据两类欧拉积分的关系,这也就是说
B ( s , 1 − s ) = π sin ⁡ ( s π ) \Beta(s, 1-s) = \frac{\pi}{\sin(s\pi)} B(s,1s)=sin(sπ)π
做换元 x → y 1 + y x \to \frac{y}{1+y} x1+yy,就有
B ( s , 1 − s ) = ∫ 0 ∞ y s − 1 1 + y d y \Beta(s, 1-s) = \int_0^\infin\frac{y^{s-1}}{1+y}\rm dy B(s,1s)=

  • 20
    点赞
  • 47
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
首先,我们需要了解黎曼 zeta 函数的定义: $$\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}$$ 其中,$s$ 是一个复数。当 $s$ 的实部大于 $1$ 时,黎曼 zeta 函数是收敛的。当 $s=1$ 时,黎曼 zeta 函数为无穷大。 黎曼 zeta 函数的一个重要性质是,它可以被解析延拓到整个复平面,除了 $s=1$ 这个点存在一个极点。具体来说,黎曼 zeta 函数可以被写成以下形式: $$\zeta(s)=\frac{1}{\Gamma(s)}\int_{0}^{\infty}\frac{x^{s-1}}{e^x-1}\mathrm{d}x$$ 其中,$\Gamma(s)$ 是欧拉伽玛函数。 接下来,我们来证明素数的频率与黎曼 zeta 函数的零点相关。为此,我们需要引入另一个函数 $\psi(x)$,它被定义为: $$\psi(x)=\sum_{n\leq x}\Lambda(n)$$ 其中,$\Lambda(n)$ 表示 n 的 von Mangoldt 函数,即: $$\Lambda(n)=\begin{cases}\ln p, & \text{if }n=p^k\text{ for some prime }p\text{ and integer }k\geq 1\\0, & \text{otherwise}\end{cases}$$ 通过分部积分,可以得到: $$\psi(x)=x-\sum_{\rho}\frac{x^{\rho}}{\rho}-\ln 2\pi-\frac{1}{2}\ln(1-x^{-2})$$ 其中,$\rho$ 是黎曼 zeta 函数的零点。 接下来,我们需要证明的是,当 $x$ 趋近于正无穷时,$\psi(x)$ 与素数的个数 $\pi(x)$ 之间的关系是: $$\psi(x)\sim x\ \text{as}\ x\rightarrow\infty$$ 其中,“$\sim$”表示“渐进等于”。 这个结论可以通过黎曼-底格尔公式得到。黎曼-底格尔公式是一个重要的数学公式,它描述了黎曼 zeta 函数与素数分布之间的关系。具体来说,黎曼-底格尔公式可以写成以下形式: $$\pi(x)=\text{li}(x)+O\left(\frac{x}{\ln x}\right)$$ 其中,$\text{li}(x)$ 是对数积分函数,$O\left(\frac{x}{\ln x}\right)$ 是渐进符号,表示当 $x$ 趋近于正无穷时,剩余的误差可以被一个与 $\frac{x}{\ln x}$ 同阶的函数所控制。 我们可以对黎曼-底格尔公式进行微调,得到: $$\psi(x)=\text{li}(x)-\sum_{p}\text{li}(x^{1/p})-\ln 2-\frac{1}{2}\ln(1-x^{-2})+O\left(\frac{x}{\ln x}\right)$$ 其中,$p$ 是素数。这个公式的证明可以参考数论中的相关文献。 接下来,我们证明当 $x$ 趋近于正无穷时,$\psi(x)$ 与素数的个数 $\pi(x)$ 之间的关系是: $$\psi(x)\sim x\ \text{as}\ x\rightarrow\infty$$ 我们可以先证明当 $x$ 趋近于正无穷时,$\text{li}(x)$ 与 $x$ 的差距是比较小的。具体来说,根据定义,$\text{li}(x)$ 可以写成以下积分的形式: $$\text{li}(x)=\int_{2}^{x}\frac{\mathrm{d}t}{\ln t}$$ 通过分部积分,可以得到: $$\text{li}(x)=\frac{x}{\ln x}-\int_{2}^{x}\frac{\mathrm{d}t}{\ln^2 t}+\frac{2}{\ln 2}$$ 因此,当 $x$ 趋近于正无穷时,$\text{li}(x)$ 与 $x$ 的差距是 $O\left(\frac{x}{\ln x}\right)$ 级别的。 接下来,我们证明当 $x$ 趋近于正无穷时,$\sum_{p}\text{li}(x^{1/p})$ 与 $x$ 的差距也是比较小的。具体来说,我们可以写出: $$\sum_{p}\text{li}(x^{1/p})\leq\sum_{n}\text{li}(x^{1/n})=\sum_{n}\int_{2}^{x^{1/n}}\frac{\mathrm{d}t}{\ln t}=\sum_{n}\frac{x^{1/n}}{n\ln x}=O\left(\frac{x}{\ln x}\right)$$ 其中,第一个等式是因为 $\text{li}(x^{1/n})$ 可以看成是 $\text{li}(y)$,其中 $y$ 是满足 $y^n=x$ 的最小整数;第二个等式是通过换元积分得到的;第三个等式是通过级数展开得到的。 因此,当 $x$ 趋近于正无穷时,$\psi(x)$ 与 $x$ 的差距是 $O\left(\frac{x}{\ln x}\right)$ 级别的。这意味着,当 $x$ 趋近于正无穷时,$\psi(x)$ 与 $x$ 是同阶的,即: $$\psi(x)\sim x\ \text{as}\ x\rightarrow\infty$$ 因此,我们证明了素数的频率与黎曼 zeta 函数的零点分布相关的结论。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值