题目链接:
题目描述:
给你一个整数数组 nums 和一个整数 target 。
向数组中的每个整数前添加 '+' 或 '-' ,然后串联起所有整数,可以构造一个 表达式 :
例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1" 。
返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。
示例 1:
输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3
示例 2:
输入:nums = [1], target = 1
输出:1
提示:
1 <= nums.length <= 20
0 <= nums[i] <= 1000
0 <= sum(nums[i]) <= 1000
-1000 <= target <= 1000
解析:
假设正的部分是left,负的部分是right,则left + right = sum, left - right = target.得left = (target + sum) // 2
相当于从nums中选出几个数,这几个数得和为(sum + target)/2。这种从一堆数中取满足条件得几个数得情况刚好和0-1背包对应上了
背包容量相当于元素和(从1到(sum + target)/2连续),物品的价值和重量都相当于元素的值,dp[j]表示和为j时已决策完的元素之和可以凑成j的组合数
动规4部曲:
确定dp数组:dp[j]表示决策完的元素中能凑成和为j的组合的数量
递推公式:dp[j] = dp[j] + dp[j-nums[i]]因为求得是组合总数量,所以要用+
初始化dp数组:dp[0] = 1,凑成0就是什么也不选的这一种情况,其他都初始化为0
确定遍历顺序:外层顺序,内层逆序,同0-1背包
代码如下:
class Solution:
def findTargetSumWays(self, nums: List[int], target: int) -> int:
nums_sum = sum(nums)
if((nums_sum + target) % 2 == 1): return 0
left = (nums_sum + target) // 2
if(left < 0): return 0
dp = [0] * (left + 1)
dp[0] = 1#初始化dp数组
for i in range(len(nums)):
for j in range(left, nums[i] - 1, -1):
dp[j] += dp[j - nums[i]]
return dp[left]