#include<iostream>
#define MAXSIZE 100
#define MAXINT 37267
using namespace std;
typedef struct
{
char vex[MAXSIZE];
int arcs[MAXSIZE][MAXSIZE];
int vexnum,arcnum;
}AMGraph;
struct
{
char adjvex;
int lowcost;
}closedge[MAXSIZE];
int LocateVex(AMGraph G,char v)
{
for(int i=0;i<G.vexnum;i++)
{
if(G.vex[i]==v)
return i;
}
}
void CreatUDN(AMGraph &G)
{
cout<<"输入顶点个数和图的边数:";
cin>>G.vexnum>>G.arcnum;
for(int i=0;i<G.vexnum;i++)
{
cout<<"第"<<i+1<<"个顶点为:";
cin>>G.vex[i];
}
for(int i=0;i<G.vexnum;i++)
for(int j=0;j<G.vexnum;j++)
G.arcs[i][j]=MAXINT;
for(int k=0;k<G.arcnum;k++)
{
char v1,v2;
int w;
cout<<"输入相邻接的两点及两点间的长度:";
cin>>v1>>v2>>w;
int i=LocateVex(G,v1);
int j=LocateVex(G,v2);
G.arcs[i][j]=w;
G.arcs[j][i]=w;
}
return;
}
void MiniSpanTree_Prim(AMGraph G,char u)
{
int k=LocateVex(G,u);
for(int j=0;j<G.vexnum;j++)
{
if(j!=k)
{
closedge[j].adjvex=u;
closedge[j].lowcost=G.arcs[k][j];
}
}
closedge[k].lowcost=0;
for(int i=1;i<G.vexnum;i++)
{
for(int a=0;a<G.vexnum;a++)
{
if(closedge[a].lowcost!=0)
{
k=a;
break;
}
}
for(int b=0;b<G.vexnum;b++)
{
if(closedge[k].lowcost>closedge[b].lowcost&&closedge[b].lowcost!=0)
k=b;
}
char u0=closedge[k].adjvex;
char v0=G.vex[k];
cout<<u0<<v0<<" ";
closedge[k].lowcost=0;
for(int j=0;j<G.vexnum;j++)
{
if(G.arcs[k][j]<closedge[j].lowcost)
{
closedge[j].lowcost=G.arcs[k][j];
closedge[j].adjvex=G.vex[k];
}
}
}
return;
}
int main()
{
AMGraph G;
CreatUDN(G);
char u;
cout<<"开始访问的顶点为:";
cin>>u;
cout<<"最小生成树的链接顺序为:"<<endl;
MiniSpanTree_Prim(G,u);
return 0;
}
该代码采用C++程序语言进行编译,利用普里姆算法实现图的最小生成树的形成,普里姆算法更适用于稠密网的最小生成树的形成,稀疏网的最小生成树的形成更适用克鲁斯卡尔算法。