239. 滑动窗口最大值
给你一个整数数组 nums
,有一个大小为 k
的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k
个数字。滑动窗口每次只向右移动一位。返回滑动窗口中的最大值 。
示例 1:
输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置 最大值
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
示例 2:
输入:nums = [1], k = 1
输出:[1]
问题描述:
利用双端队列自己实现一个单调队列。 遍历整数数组,把数组下标依次加入队列,当队列加了一个下标代表的数,比之前代表的数都大, 那么就把队列中前面的下标全都移除,所以队列最前面的下标对应的数是最大值。 每当超过k的范围就把队列里最前面的下标移除。
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
Deque<Integer> deque = new ArrayDeque<>();
int[] res = new int[nums.length - k + 1];//找规律
int index = 0;
for (int i = 0; i < nums.length; i++) {//i为nums下标 队列放下标
//如果队中元素,头与尾的距离比k大,则移除队头
while (!deque.isEmpty() && deque.peek()<i-k+1) {//控制滑动窗口中遍历的范围,
//每个窗口的队头为i-k+1
deque.removeFirst();
}
//如果此时要加入队列的元素比队尾元素大,则移除队尾元素
while (!deque.isEmpty() && nums[i] > nums[deque.peekLast()]) {
deque.removeLast();
}
deque.addLast(i);
//找滑动窗口选最大值的开始,例如k=2,则i到第二个位置就可以找出窗口的最大值
if (i >= k - 1) {
res[index] = nums[deque.peekFirst()];
index++;
}
}
return res;
}
}
这题有点ex,一开始队列存的是数而不是下标,结果就是,如果最大数在中间,完全移除不了,看了题解才知道要存下标,不然就得自己新写个队列,要写新方法,太麻烦果断放弃,直接改下标。orz
347.前 K 个高频元素
给你一个整数数组 nums
和一个整数 k
,请你返回其中出现频率前 k
高的元素。你可以按 任意顺序 返回答案。
示例 1:
输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]
示例 2:
输入: nums = [1], k = 1
输出: [1]
问题分析:
先用map结构,key为值,value为出现次数。再把value从小到大排序,用小顶堆(PriorityQueue)实现,优先级队列存二元组pq[0]为值,pq[1]为出现次数。当小顶堆的元素数量>k,且出现次数大于根节点,则移出小顶堆的根节点,再添加新节点。最后用数组表示前k个元素。
class Solution {
public int[] topKFrequent(int[] nums, int k) {
Map<Integer,Integer>map=new HashMap<>();
for(int num:nums){
map.put(num,map.getOrDefault(num,0)+1);//若没有出现过则为0,若有则+1
}
//在优先队列存二元组<num,cs>,cs为在数组中出现的次数
PriorityQueue<int[]>pq=new PriorityQueue<>((pair1,pair2)->pair1[1]-pair2[1]);
//括号里是重写比较器的lambda表达式
// part1 - part2是升序排序(小顶堆),part2 - part1 是降序排序(大顶堆)。
for (Map.Entry<Integer,Integer>entry:map.entrySet()){
//通过遍历 map.entrySet() 获取每个 entry 的 key 和 value.
if(pq.size()<k){ //通过Map转成set就可以迭代
pq.add(new int[]{entry.getKey(), entry.getValue()});
}
else {
if (entry.getValue() > pq.peek()[1]) {//当前元素出现次数大于小顶堆第一个
pq.poll(); //数组1下标存的是 出现频率
pq.add(new int[]{ entry.getKey(),entry.getValue()});
}
}
}
int[] ans=new int[k];
for(int i=k-1;i>=0;i--){
ans[i]=pq.poll()[0];//数组0下标存的是 key
}
return ans;
}
}